计算机与现代化 ›› 2025, Vol. 0 ›› Issue (01): 113-119.doi: 10.3969/j.issn.1006-2475.2025.01.018

• 算法设计与分析 • 上一篇    下一篇

基于YOLOv8改进的水下目标检测算法


  

  1. (重庆师范大学计算机与信息科学学院,重庆 401331)
  • 出版日期:2025-01-27 发布日期:2025-01-27
  • 基金资助:
    重庆市自然科学基金资助项目(cstc2021jsyj-yzysbAX0011); 重庆市教委科学技术研究项目(KJZD-M202300502)

Improved Underwater Target Detection Algorithm Based on YOLOv8

  1. (College of Computer and Information Science, Chongqing Normal University, Chonggqing 401331, China)
  • Online:2025-01-27 Published:2025-01-27

摘要: 针对水下图像目标检测中错检、漏检现象导致检测精度低的问题,提出一种改进YOLOv8n的轻量级水下图像目标检测算法,旨在提升水下目标图像的检测精度。首先,用残差网络ResNet10来替换YOLOv8中的骨干网络,以加强骨干网络的特征提取能力;其次,利用大卷积核注意力机制来改进快速特征金字塔模块,以提高模型融合多尺度特征的能力;再次,使用最新YOLOv9算法中的泛化高效层聚合网络替换原模型的C2f模块,使模型能够在保持高准确性的同时降低计算成本;最后,使用新的损失函数Inner-SIoU来提升模型的泛化能力,同时加快模型的收敛速度。通过实验,在URPC2020水下图像目标检测数据集上,改进后的算法mAP50达到86.2%,比原模型提升了2.6个百分点的精度,相比于先进的YOLOv8s和YOLOv7-tiny检测器,以及相同领域的研究工作,本文方法都获得了较高的检测精度。

关键词: 水下目标检测, YOLOv8, 残差网络, 注意力机制, 损失函数

Abstract: Aiming at the problem of low detection accuracy caused by false detection and missing detection in underwater image target detection, this paper proposes a lightweight underwater image target detection algorithm based on improved YOLOv8n, aiming to improve the detection accuracy of underwater target images. Firstly, the backbone network in YOLOv8 is replaced by the residual network ResNet10 to enhance the feature extraction capability of the backbone network. Secondly, the large convolution kernel attention mechanism is used to improve the fast feature pyramid module to improve the model’s ability to fuse multi-scale features. Then, the C2f module of the original model is replaced by the generalized efficient layer aggregation network in the latest YOLOv9 algorithm, so that the model can maintain high accuracy while reducing computing costs. Finally, the new loss function Inner-SIoU is used to improve the generalization ability of the model and accelerate the convergence speed of the model. Through experiments, on the URPC2020 underwater image target detection dataset, the improved algorithm mAP50 has reached 86.2%, 2.6 percentage points higher accuracy than the original model. Compared with the advanced YOLOv8s and YOLOv7 tiny detectors, as well as the research work in the same field, the method proposed in this paper has achieved higher detection accuracy.

Key words: underwater target detection, YOLOv8, residual network, attention mechanism, loss function

中图分类号: