[1] 李炜,黄心汉,王敏,等. 基于机器视觉的带钢表面缺陷检测系统[J]. 华中科技大学学报(自然科学版), 2003,31(2):72-74.
[2] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015,521(7533):436-444.
[3] 张振宇,陈晓波. 基于深度学习模型识别热轧钢卷边部缺陷的探索[J]. 冶金自动化, 2019(3):13-16.
[4] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS-Improving object detection with one line of code[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017:5562-5570.
[5] ZHAO X, NI Y, JIA H H. Modified object detection method based on YOLO[C]// CCF Chinese Conference on Computer Vision. 2017:233-244.
[6] IGLOVIKOV I, SEFERBEKOV S, BUSLAEV A, et al. TernausNetV2: Fully convolutional network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2018:233-237.
[7] 姚群力,胡显,雷宏. 深度卷积神经网络在目标检测中的研究进展[J]. 计算机工程与应用, 2018,54(17):1-9.
[8] 高文,陈熙霖. 计算机视觉[M]. 北京:清华大学出版社, 1999.
[9] GIRSHICK R, DONAHUE J, DARRELLAND T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[10]HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015,37(9):1904-1916.
[11]GIRSHICK R. Fast R-CNN[C]// IEEE International Conference on Computer Vision. 2015:1440-1448.
[12]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// International Conference on Neural Information Processing Systems. 2015:91-99.
[13]CHEN X L, GUPTA A. An implementation of faster R-CNN with study for region sampling[J]. arXiv:1702.02138, 2017.
[14]DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-based fully convolutional networks[J]. Computer Vision and Pattern Recognition, 2016,20:379-387.
[15]HE K M, GKIOXARI G, DOLLR P, et al. Mask R-CNN[C]// IEEE International Conference on Computer Vision. 2017:2980-2988.
[16]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[17]REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
[18]REDMON J, FARHADI A. YOLOv3: An incremental improvement[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2018:89-95.
[19]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. 2016:21-37.
[20]FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv:1707.06659, 2017.
[21]LI Z, ZHOU F. FSSD: Feature fusion single shot multibox detector[J]. arXiv:1712.00690, 2017.
[22]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017:2980-2988.
[23]李宇萌,段欣伯,马蓬勃. 基于点云的转子表面缺陷检测方法[J]. 计算机与现代化, 2019(10):101-107.
[24]姚明海,陈志浩. 基于深度主动学习的磁片表面缺陷检测[J]. 计算机测量与控制, 2018,26(9):29-33.
[25]魏若峰. 基于深度学习的铝型材表面瑕疵识别技术研究[D]. 杭州:浙江大学, 2019.
[26]纪艳玲,林志贤,唐谦,等. 基于K-means聚类和LVQ神经网络的 OLED缺陷像素识别[J]. 计算机与现代化, 2019(7):37-42.
[27]杨丹,赵海滨,龙哲,等. MATLAB图像处理实例讲解[M]. 北京:清华大学出版社, 2013.
[28]高翔,张涛,刘毅,等. 视觉SLAM十四讲:从理论到实践[M]. 北京:电子工业出版社, 2017.
|