[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018,68(6):394-424.
[2] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(2):318-327.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[4] GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[6] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013,104(2):154-171.
[7] 宋尚玲,杨阳,李夏,等. 基于Faster-RCNN的肺结节检测算法[J]. 中国生物医学工程学报, 2020,39(2):129-136.
[8] 赵子婧,李学伟,刘宏哲. 基于深度学习的目标检测算法综述[C]// 中国计算机用户协会网络应用分会2019年第二十三届网络新技术与应用年会论文集. 2019:152-156.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[10]林健巍. YOLO图像检测技术综述[J]. 福建电脑, 2019,35(9):80-83.
[11]ARMATO S G, MCLENNAN G, BIDAUT L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans[J]. Medical Physics, 2011,38(2):915-931.
[12]KARTHIKEYAN A, VALLIAMMAI M. Lungs segmentation using multi-level thresholding in CT images[J]. International Journal of Electronics and Computer Science Engineering, 2012,1(3):1509-1513.
[13]WAN AHMAD W S H M, W ZAKI W M D, AHMAD FAUZI M F. Lung segmentation on standard and mobile chest radiographs using oriented Gaussian derivatives filter[J]. Biomedical Engineering Online, 2015,14:1-26.
[14]KUMAR D I J, GANESH B S. Segmenting the lung nodule image and classification by K-NN[J]. International Journal of Applied Engineering Research, Special Issues, 2015,10(20):19614-19617.
[15]陈树越,晁亚,邹凌. 基于几何特征的孤立性肺结节检测[J]. 生物医学工程学杂志, 2016,33(4):680-685.
[16]裴晓敏,郭红宇,戴建平. CT图像中肺实质的自动分割[J]. 中国医学影像技术, 2009,25(7):1293-1295.
[17]严忱君. 基于机器视觉的肺结节初筛算法研究与实现[D]. 杭州:浙江大学, 2018.
[18]REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv:1804.02767, 2018.
[19]SZEGEDY C, LIU W, JIA Y P, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[20]陈强锐. 基于卷积神经网络的肺实质分割与肺结节检测方法研究[D]. 南京:南京邮电大学, 2019.
[21]欧陈委. K-均值聚类算法的研究与改进[D]. 长沙:长沙理工大学, 2011.
[22]汪宋,费树岷. SSD(Single Shot MultiBox Detector)目标检测算法的研究与改进[J]. 工业控制计算机, 2019,32(4):103-105.
[23]MESSAY T, HARDIE R C, TUINSTRA T R. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset[J]. Medical Image Analysis, 2015,22(1):48-62.
[24]刘一鸣,侯智超,李晓琴,等. 基于卷积神经网络的肺结节检测方法[J]. 生物医学工程学杂志, 2019,36(6):969-977.
[25]SETIO A A A, TRAVERSO A, DE BEL T, et al. LUNA16-results[EB/OL]. (2018-05-30)[2020-03-01]. https://luna16.grand-challenge.org/results.
[26]王梦松. 基于深度神经网络的CT影像肺结节检测与诊断研究[D]. 西安:西北大学, 2019.
[27]徐峰,郑斌,郭进祥,等. 基于U-Net的结节分割方法[J]. 软件导刊, 2018,17(8):161-164.
[28]TORRES E L, FIORINA E, PENNAZIO F, et a1. Large scale validation of the M5L lung CAD on heterogeneous CT datasets[J]. Medical Physics, 2015,42(4):1477-1489.
|