[1] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,39(6):1137-1149.
[2] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. 2017:2980-2988.
[3] REDMON J, DIVVALA S, GRISHICK R, et al. You only look once: Unified real-time object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. 2016:21-37.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[J]. Computer Vision and Pattern Recognition, 2014:arXiv:1311.2524.
[6] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transaction on Pattern Analysis & Machine Intelligence, 2014,39(4):640-651.
[7]〖KG-*3〗 NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]// Proceedings of 2018 IEEE Conference on Computer Vision And Pattern Recognition. 2018:7132-7141.
[8] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:2414-2423.
[9] 于科为. 基于卷积神经网络的工件缺陷检测研究[J]. 信息与电脑(理论版), 2018(21):7-9.
[10]REDMON J, FARAHADI A. YOLOV3: An incremental improvement[J]. Computer Vision and Pattern Recognition, 2018:arXiv:1804.02767.
[11]刘雄祥. 基于卷积神经网络的铁轨表面缺陷识别研究[D]. 绵阳:西南科技大学, 2018
[12]ZHAO Z X, LI B, DONG R, et al. A surface defect detection method based on positive samples[C]// Pacific Rim International Conference on Artificial Intelligence. 2018:473-481.
[13]GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014:2672-2680.
[14]OJALA T, PIETIKINEN M, HARWOOD D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition,1996,29(1):51-59.
[15]LIU R. Region-convolutional neural network for detecting capsule surface defects[J]. Boletin Tecnico, 2017,55(3):92-100.
[16]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]// Proceedings of International Conference on Learning Representations(ICLR). 2015:1-13.
[17]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[18]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017(99):2999-3007.
[19]BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS improving object detection with one line of code[C]// 2017 IEEE International Conference on Computer Vision. 2017:5562-5570.
[20]HU J, SHEN L, ALBANIE S. Squeeze-and-excitation networks[C]// Proceedings of 2018 IEEE Conference on Computer Vision And Pattern Recognition. 2018:7132-7141.
[21]WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:1-8.
[22]CAO Y, XU J R, LIN S, et al. GCNet: Non-local networks meet squeeze-excitation networks and beyond[J]. Computer Vision and Pattern Recognition. 2019:arXiv:1904.11492.
[23]LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
[24]PAPANDREOU G, KOKKINOS I, SAVALLE P A. Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection[C]// Proceedings of 2015 IEEE Conference on Computer Vision And Pattern Recognition. 2015:390-399. |