[1] YI W L, XIA S K, KUZMIN S, et al. RTFVE-YOLOv9: Real-time fruit volume estimation model integrating YOLOv9 and binocular stereo vision[J]. Computers and Electronics in Agriculture, 2025,236:110401.
[2] YI W L, ZHANG X S, DAI S M, et al. MV-SSRP: Machine vision approach for stress-strain measurement in rice plants[J]. Agronomy, 2024,14(7):1443.
[3] YI W L, XIA S K, KUZMIN S, et al. YOLOv7-KDT: An ensemble model for pomelo counting in complex environment[J]. Computers and Electronics in Agriculture, 2024,227:109469.
[4] LIN G Y, YANG L, ZHANG C Y, et al. Patch-Grid: An efficient and feature-preserving neural implicit surface representation[J]. ACM Transactions on Graphics, 2025,44(2):1-21.
[5] RELLA M E, CHHATKULI A, KONUKOGLU E, et al. Neural vector fields for implicit surface representation and inference[J]. International Journal of Computer Vision, 2025,133(4):1855-1878.
[6] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021,65(1):99-106.
[7] LIAO Y, DI Y D, ZHOU H, et al. A survey on neural radiance fields[J]. ACM Computing Surveys, 2025,58(2):1-33.
[8] HU K W, YING W, PAN Y Q, et al. High-fidelity 3D reconstruction of plants using neural radiance fields[J]. Computers and Electronics in Agriculture, 2024,220:108848.
[9] ZHANG Y, WU Y Q, TONG K, et al. Review of visual simultaneous localization and mapping based on deep learning[J]. Remote Sensing, 2023,15(11):2740.
[10] WANG J, BAO W D, SUN L C, et al. Private model compression via knowledge distillation[C]// Proceedings of the AAAI Conference on Artificial Intelligence. AAAI, 2019:1190-1197.
[11] PARK Y, HWANG J, JEONG S M, et al. MSPKD: Multi spatial projectors for knowledge distillation in semantic segmentation[J]. Machine Vision and Applications, 2025,36(4). DOI:10.1007/s00138-025-01721-9.
[12] MALIK A, MIRDEHGHAN P, NOUSIAS S, et al. Transient neural radiance fields for lidar view synthesis and 3D reconstruction[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. ACM, 2023:71569-71581.
[13] KAJIYA J T, VON HERZEN B P. Ray tracing volume densities[J]. ACM SIGGRAPH Computer Graphics, 1984,18(3):165-174.
[14] GUO Z Y, ZHOU W G, WANG M, et al. HandNeRF++: Modeling animatable interacting hands with neural radiance fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025,47(9):8102-8116.
[15] CHRISTODOULIDES A, TAM G K L, CLARKE J, et al. Survey on 3D reconstruction techniques: Large-scale urban city reconstruction and requirements[J]. IEEE Transactions on Visualization and Computer Graphics, 2025,31(10):9343-9367.
[16] ZHANG K, RIEGLER G, SNAVELY N, et al. Nerf++: Analyzing and improving neural radiance fields[J]. arXiv preprint arXiv:2010.07492, 2020.
[17] SITZMANN V, THIES J, HEIDE F, et al. DeepVoxels: Learning persistent 3D feature embeddings[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019:2437-2446.
[18] NEFF T, STADLBAUER P, PARGER M, et al. DONeRF: Towards real-time rendering of compact neural radiance fields using depth oracle networks[J]. Computer Graphics Forum, 2021,40(4):45-59.
[19] SRINIVASAN P P, DENG B, ZHANG X, et al. NeRV: Neural reflectance and visibility fields for relighting and view synthesis[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:7495-7504.
[20] LIU Z, ZHU H, ZHANG Q, et al. Finer: Flexible spectral-bias tuning in implicit neural representation by variable-periodic activation functions[C]// Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2024:2713-2722.
[21] HUANG Z C, BAI S J, KOLTER J Z. (Implicit)2: Implicit layers for implicit representations[C]// Proceedings of 35th Annual Conference on Neural Information Processing Systems. ACM, 2021:9639-9650.
[22] CHAN E R, MONTEIRO M, KELLNHOFER P, et al. pi-GAN: Periodic implicit generative adversarial networks for 3D-aware image synthesis[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:5799-5809.
[23] XIA Y T, TANG H, TIMOFTE R, et al. SiNeRF: Sinusoidal neural radiance fields for joint pose estimation and scene reconstruction[J]. arXiv preprint arXiv:2210.04553,
2022.
[24] CHEN Z Q, FUNKHOUSER T, HEDMAN P, et al. MobileNeRF: Exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2023:16569-16578.
[25] GARBIN S J, KOWALSKI M, JOHNSON M, et al. FastNeRF: High-fidelity neural rendering at 200fps[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. IEEE, 2021:14346-14355.
[26] HEDMAN P, SRINIVASAN P P, MILDENHALL B, et al. Baking neural radiance fields for real-time view synthesis[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. IEEE, 2021:5875-5884.
[27] KURZ A, NEFF T, LV Z Y, et al. AdaNeRF: Adaptive sampling for real-time rendering of neural radiance fields[C]// Proceedings of the 17th European Conference on Computer Vision. Springer, 2022:254-270.
[28] PIALA M, CLARK R. TermiNeRF: Ray termination prediction for efficient neural rendering[C]// Proceedings of the 2021 International Conference on 3D Vision (3DV). IEEE, 2021:1106-1114.
[29] ATTAL B, HUANG J B, ZOLLHÖFER M, et al. Learning neural light fields with ray-space embedding[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022:19819-19829.
[30] LIU L J, GU J T, LIN Z K, et al. Neural sparse voxel fields[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. ACM, 2020:15651
-15663.
[31] YU A, LI R, TANCIK M, et al. PlenOctrees for real-time rendering of neural radiance fields[C]// Proceedings of the 2021 IEEE/CVF Computer Vision and Pattern Recognition. IEEE, 2021:5752-5761.
[32] MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics (TOG), 2022,41(4). DOI: 10.1145/3528223.3530127.
[33] REBAIN D, JIANG W, YAZDANI S, et al. DeRF: Decomposed radiance fields[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:14153-14161.
[34] WANG Z R, WU S Z, XIE W D, et al. NeRF--: Neural radiance fields without known camera parameters[J]. arXiv preprint arXiv:2102.07064, 2021.
[35] GOU J P, YU B S, MAYBANK S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021,129(6):1789-1819.
[36] MILDENHALL B, SRINIVASAN P P, ORTIZ-CAYON R, et al. Local light field fusion: Practical view synthesis with prescriptive sampling guidelines[J]. ACM Transactions on Graphics (ToG), 2019,38(4). DOI: 10.1145/3306346.3322980.
[37] SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:4104-4113.
[38] SARA U, AKTER M, UDDIN M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study[J]. Journal of Computer and Communications, 2019,7(3):8-18.
[39] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600-612.
[40] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018:586-595.
[41] ROSS A, WILLSON V L. Paired samples T-test[M]// Basic and advanced statistical tests: Writing results sections and creating tables and figures. Rotterdam: SensePublishers, 2017:17-19.
[42] CHEN A, XU Z X, GEIGER A, et al. TensoRF: Tensorial radiance fields[C]// Proceedings of the 2022 European Conference on Computer Vision. Springer, 2022:333-350.
[43] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015.
[44] AHN S X, HU S, DAMIANOU A, et al. Variational information distillation for knowledge transfer[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019:9163-9171.
[45] CHEN G B, CHOI W, YU X, et al. Learning efficient object detection models with knowledge distillation[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017:742-751.
[46] ZHOU B L, ZHAO H, PUIG X, et al. Semantic understanding of scenes through the ADE20K dataset[J]. International Journal of Computer Vision, 2019,127(3):302-321.
|