[1] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
|
[2] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
|
[3] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017:4278-4284.
|
[4] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010.
|
[5] |
XIE S N, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:5987-5995.
|
[6] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:3431-3440.
|
[7] |
YAN Z W, ZHENG H C, LI Y, et al. Detection-oriented backbone trained from near scratch and local feature refinement for small object detection[J]. Neural Processing Letters, 2021,53(3):1921-1943.
|
[8] |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.
|
[9] |
ZHU Z, HUANG G, DENG J K, et al. WebFace260M: A benchmark unveiling the power of million-scale deep face recognition[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:10487-10497.
|
[10] |
MELIS M, DEMONTIS A, BIGGIO B, et al. Is deep learning safe for robot vision? Adversarial examples against the iCub humanoid[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. 2017:751-759.
|
[11] |
GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.
|
[12] |
VARGAS D V, SU J W. Understanding the one-pixel attack: Propagation maps and locality analysis[J]. arXiv preprint arXiv:1902.02947, 2019.
|
[13] |
GAO J, WANG B L, LIN Z M, et al. DeepCloak: Masking deep neural network models for robustness against adversarial samples[J]. arXiv preprint arXiv:1702.06763, 2017.
|
[14] |
LIAO F Z, LIANG M, DONG Y P, et al. Defense against adversarial attacks using high-level representation guided denoiser[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:1778-1787.
|
[15] |
HANNUN A, CASE C, CASPER J, et al. Deep speech: Scaling up end-to-end speech recognition[J]. arXiv preprint arXiv:1412.5567, 2014.
|
[16] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540):529-533.
|
[17] |
KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial examples in the physical world[M]// Artificial Intelligence Safety and Security. Chapman and Hall/CRC, 2018:99-112.
|
[18] |
MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[J]. arXiv preprint arXiv:1706.06083, 2017.
|
[19] |
MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:2574-2582.
|
[20] |
CARLINI N, WAGNER D. Adversarial examples are not easily detected: Bypassing ten detection methods[C]// Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. 2017:3-14.
|
[21] |
胡卫,赵文龙,陈璐,等. 基于Logits向量的JSMA对抗样本攻击改进算法[J]. 信息网络安全, 2022,22(3):62-69.
|
[22] |
李哲铭,张恒巍,马军强,等. 基于平移随机变换的对抗样本攻击算法研究[J/OL]. 计算机工程:1-12(2022-01-20)[2022-07-23]. https://kns.cnki.net/kcms/detail/31.1289.
|
|
TP.20220119.1505.007.html.
|
[23] |
李帅. 基于图像隐空间的黑盒攻击方法[D]. 北京:北京邮电大学, 2021.
|
[24] |
AGARAP A F. Deep learning using rectified linear units (ReLU)[J]. arXiv preprint arXiv:1803.08375, 2018.
|
[25] |
IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. 2015:448-456.
|
[26] |
KRIZHEVSKY A. Learning multiple layers of features from tiny images[R]. Technical Report TR-2009, University of Toronto, 2009.
|
[27] |
DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009:248-255.
|