计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 74-80.doi: 10.3969/j.issn.1006-2475.2025.12.011

• 算法设计与分析 • 上一篇    下一篇

基于信息差异感知的变电站隐蔽鸟类目标检测

  


  1. (1.国网宁夏电力有限公司超高压公司,宁夏 银川 750011; 2.国网宁夏电力有限公司,宁夏 银川 750011;
    3.河海大学信息科学与工程学院,江苏 常州 213000)
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介: 作者简介:赵欣洋(1985—),男,宁夏银川人,高级工程师,硕士,研究方向:特高压运维,E-mail: xc830840@163.com; 通信作者:李庆武(1964—),男, 河南新乡人,教授,博士生导师,研究方向:图像处理,视觉感知,E-mail: li_qingwu@163.com。
  • 基金资助:
     基金项目:国网宁夏电力有限公司科技项目(5229CG230003)
      

Camouflaged Bird Object Detection Based on Discrepancy Sense in Substation 


  1. (1. Super High Voltage Company of State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750011, China;
    2. State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750011, China;
    3. College of Information Science and Engineering, Hohai University, Changzhou 213000, China)
  • Online:2025-12-18 Published:2025-12-18

摘要: 摘要:为了克服鸟类目标尺寸较小以及与变电站周围背景相似度高所导致的图像检测模型分割准确率低的问题,提出一种基于信息差异感知的变电站隐蔽目标检测模型。该模型通过全局引导提取模块获取全局引导,在扩大感受野的同时,保留原始图像的细节信息。通过边界引导生成模块融合所有尺度的特征得到边界引导,以避免跨层特征交互引起的噪声干扰。同时,使用双分支差异感知模块融合多个引导,通过交替关注目标边界及其周边背景,进而扩大二者之间的差异,逐层细化获得更精确的图像分割结果。在自建的变电站鸟类小目标数据集上的实验结果表明,本文方法在交并比指标上比当前最优的隐蔽目标检测算法提高了2.75百分点,为驱赶变电站隐蔽鸟类目标提供了可靠的依据。




关键词: 关键词:隐蔽目标检测, 差异感知, 鸟类目标检测, 特征融合

Abstract: Abstract: This paper proposes a camouflaged small object detection network based on discrepancy sense in substation to address the challenge of detecting camouflaged bird objects in the environment of substations, characterized by small sizes and high similarity with surrounding backgrounds leading to low segmentation accuracy of models. The model leverages a global guidance extraction module to obtain global guidance, preserving original detailed information while enlarging the receptive field. Additionally, a boundary guidance generation module is employed to fuse features from all scales to obtain boundary guidance, thereby mitigating noise interference caused by inter-layer feature interactions. Furthermore, a dual-branch discrepancy perception module is utilized to integrate multiple guidance, progressively refining segmentation results by alternating attention between the target boundary and the surrounding background to amplify their discrepancies layer by layer. Experimental results on a self-built dataset of camouflaged small bird objects around substations demonstrate that the proposed method achieves an improvement of 2.75 percentage points in Intersection over Union compared to other camouflaged object detection algorithms, offering a reliable basis for effectively deterring camouflaged bird objects in substation.

Key words: Key words: camouflaged object detection, discrepancy sense, bird object detection, feature fusion

中图分类号: