[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 2012 International Conference on Neural Information Processing Systems. 2012:1097-1105.
[2] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[3] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015:1-9.
[4] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[5] DURAND T, MEHRASA N, MORI G. Learning a deep convNet for multi-label classification with partial labels[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:647-657.
[6] WEI Y C, XIA W, LIN M, et al. HCP: A flexible CNN framework for multi-label image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(9):1901-1907.
[7] WANG J, YANG Y, MAO J H, et al. CNN-RNN: A unified framework for multi-label image classification[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:2285-2294.
[8] ZHANG J J, WU Q, SHEN C H, et al. Multilabel image classification with regional latent semantic dependencies[J]. IEEE Transactions on Multimedia, 2018,20(10):2801-2813.
[9] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
[10] CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:5172-5181.
[11] WANG Y T, XIE Y Z, LIU Y, et al. Fast graph convolution network based multi-label image recognition via cross-modal fusion[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020:1575-1584.
[12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010.
[13] WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:6450-6458.
[14] YAN Z, LIU W W, WEN S P, et al. Multi-label image classification by feature attention network[J]. IEEE Access, 2019,7:98005-98013.
[15] GUO H, ZHENG K, FAN X C, et al. Visual attention consistency under image transforms for multi-label image classification[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:729-739.
[16] LANCHANTIN J, WANG T L, ORDONEZ V, et al. General multi-label image classification with transformers[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021:16473-16483.
[17] LIU S L, ZHANG L, YANG X, et al. Query2label: A simple transformer way to multi-label classification[J]. arXiv preprint arXiv:2107.10834, 2021.
[18] LI J L, LI P P, HU X G, et al. Learning common and label-specific features for multi-label classification with correlation information[J]. Pattern Recognition, 2022,121. DOI: 10.1016/j.patcog.2021.108259.
[19] RIDNIK T, BEN-BARUCH E, ZAMIR N, et al. Asymmetric loss for multi-label classification[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021:82-91.
[20] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010,88(2):303-308.
[21] LIN T Y, Maire M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision (ECCV). 2014:740-755.
[22] CUBUK E D, ZOPH B, SHLENS J, et al. Randaugment: Practical automated data augmentation with a reduced search space[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2020:3008-3017.
[23] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[J]. arXiv preprint arXiv:1711.05101, 2017.
[24] CHEN T S, XU M X, HUI X L, et al. Learning semantic-specific graph representation for multi-label image recognition[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019:522-531.
[25] HASSANIN M, RADWAN I, KHAN S, et al. Learning discriminative representations for multi-label image recognition[J]. Journal of Visual Communication and Image Representation, 2022,83. DOI: 10.1016/j.jvcir.2022.103448.
[26] CHEN Z M, WEI X S, WANG P, et al. Learning graph convolutional networks for multi-label recognition and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023,45(6):6969-6983 .
[27] ZHU F, LI H S, OUYANG W L, et al. Learning spatial regularization with image-level supervisions for multi-label image classification[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:2027-2036.
[28] GAO B B, ZHOU H Y. Learning to discover multi-class attentional regions for multi-label image recognition[J]. IEEE Transactions on Image Processing, 2021,30:5920-5932.
[29] ZHAO J W, YAN K, ZHAO Y F, et al. Transformer-based dual relation graph for multi-label image recognition[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021:163-172.
|