计算机与现代化 ›› 2023, Vol. 0 ›› Issue (04): 1-6.

• 人工智能 •    下一篇

基于1D-CNN-LSTM注意力网络的抽油机井故障诊断

  

  1. (1.中国石油大学(华东)计算机科学与技术学院,山东 青岛 266580; 2.江西省科技基础条件平台中心,江西 南昌 330003)
  • 出版日期:2023-05-09 发布日期:2023-05-09
  • 作者简介:王磊(1997—),男,山东临沂人,硕士研究生,研究方向:深度学习,故障诊断,E-mail: 997582434@qq.com; 张晓东(1979—),男,黑龙江绥化人,副教授,博士,研究方向:人工智能,大数据分析,E-mail: zhangxiaodong@upc.edu.cn; 戴欢(1985—),女,江西吉安人,高级工程师,硕士,研究方向:图像处理。
  • 基金资助:
    国家自然科学基金资助项目(61801517); 中央高校基本科研业务费专项资金资助项目(19CX02029A, 19CX02027A); 江西省自然科学基金管理科学类项目(20213BAA10W03)

Fault Diagnosis of Pumping Unit Based on 1D-CNN-LSTM Attention Network

  1. (1. College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China;
    2. Jiangxi Science and Technology Infrastructure Center, Nanchang 330003, China)
  • Online:2023-05-09 Published:2023-05-09

摘要: 针对传统基于示功图的抽油机井故障诊断方法存在特征提取复杂、模型参数量大、诊断效率低的问题,提出一种基于1D-CNN-LSTM注意力网络的故障诊断方法。将示功图转化为载荷位移序列作为网络输入,使用一维卷积神经网络(1D-CNN)在提取序列局部特征的同时减小序列长度;考虑到序列的时序特性,进一步使用长短时记忆网络(LSTM)提取序列的时序特征;为突出关键特征影响,引入Attention机制,对故障类型相关的时序特征赋予更高的注意力权重;最后将加权特征输入全连接层,利用Softmax分类器实现故障诊断。实验结果表明,所提方法的平均准确率、精确率、召回率和F1值分别达到99.13%、99.35%、99.17%和99.25%,模型大小仅为98 kB。相比基于特征工程的方法具有更高的诊断精度和泛化能力,相比基于二维卷积神经网络(2D-CNN)模型的诊断方法,显著减少了模型参数量和训练时间,提高了故障诊断效率。

关键词: 故障诊断, 卷积神经网络, 长短时记忆, 注意力机制, 深度学习

Abstract: Aiming at the problems of complex feature extraction, large amount of model parameters and low diagnostic efficiency in traditional fault diagnosis methods of pumping unit based on dynamometer diagram, this paper proposes a fault diagnosis method based on 1D-CNN-LSTM attention network. The dynamometer diagram is converted into a load displacement sequence as the network input, the one-dimensional convolutional neural network (1D-CNN) is used to extract local features of the sequence while reducing sequence length. Considering the temporal characteristics of the sequence, the long-short-term memory (LSTM) network is further used to extract temporal features of the sequence. In order to highlight the impact of key features, the attention mechanism is introduced to give higher attention weights to temporal features related to fault type. Finally, the weighted features are input into a fully connected layer, and the Softmax classifier is used to realize fault diagnosis. The experimental results show that the average accuracy, precision, recall and F1 value of the proposed method reach 99.13%, 99.35%, 99.17% and 99.25%, respectively, and the model size is only 98 kB. Compared with other methods based on feature engineering, it has higher diagnostic accuracy and generalization. Compared with other methods based on two-dimensional convolutional neural network (2D-CNN) model, it significantly reduces model parameters and training time, improves the efficiency of fault diagnosis.

Key words: fault diagnosis, convolutional neural network, long short-term memory, attention mechanism, deep learning