[1] LAFFERTYJ D, MCCALLUM A, PEREIRA F, et al. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the 18th International Conference on Machine Learning. 2001:282-289.
[2] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011,12:2493-2537.
[3] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv:1508.01991, 2015.
[4] LI P H, FU T J, MA W Y. Why attention? Analyze BiLSTM deficiency and its remedies in the case of NER[J]. Computation and Language, 2020,34(5):8236-8244.
[5] 陈伟,吴友政,陈文亮,等. 基于BiLSTM-CRF的关键词自动抽取[J]. 计算机科学, 2018,45(Z1):91-96.
[6] ZHANG Y, YANG J.Chinese NER using lattice LSTM[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. 2018:1554-1564.
[7] PETERS M E, NEUMANN M, IYYER M. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. 2018:2227-2237.
[8] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[9] JIA C, SHI Y F, YANG Q R, et al. Entity enhanced BERT pre-training for Chinese NER[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020:6384-6396.
[10]王得贤,王素格,裴文生,等. 基于JCWA-DLSTM 的法律文书命名实体识别方法[J]. 中文信息学报, 2020,34(10):51-58.
[11]LI X Y, FENG J R, MENG Y X, et al. A unified MRC framework for named entity recognition[J]. arXiv preprint arXiv:1910.11476, 2019.
[12]LI Y M, LI H, YAO K S, et al. Handling rare entities for neural sequence labeling[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020:6441-6451.
[13]JIA C, LIANG X B, ZHANG Y. Cross-domain NER using cross-domain language modeling[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019:2464-2474.
[14]SCHNEIDER E T R, DE SOUZA J V A, KNAFOU J, et al.BioBERTpt:A portuguese neural language model for clinical named entity recognition[C]// Proceedings of the 3rd Clinical Natural Language Processing Workshop. 2020:65-72.
[15]赵耀全,车超,张强. 基于新词发现和Lattice-LSTM的0中文医疗命名实体识别[J]. 计算机应用与软件, 2021,38(1):161-165.
[16]罗熹,夏先运,安莹,等. 结合多头自注意力机制与BiLSTM-CRF的中文临床实体识别[J]. 湖南大学学报(自然科学版), 2021,48(4):45-55.
[17]张旭,朱艳辉,梁文桐,等. 基于SoftLexicon的医疗实体识别模型[J]. 湖南工业大学学报, 2021,35(5):77-84.
[18]RUDER S, BINGEL J, AUGENSTEIN I, et al. Latent multi-task architecture learning[J]. Machine Learning, 2019,33(1):4822-4829.
[19]DING N, LONG D K, XU G W, et al. Coupling distant annotation and adversarial training for cross-domain Chinese word segmentation[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020: 6662-6671.
〖HJ1.1mm〗
[20]COLLOBERT R, WESTON J. A unified architecture for natural language processing: Deep neural networks with multitask learning[C]// The 25th International Conference on Machine Learning(ICML). 2008:160-167.
[21]PENG N Y, DREDZE M. Multi-task multi-domain representation learning for sequence tagging[J].arXiv preprint arXiv:1608.02689, 2016.
[22]CHEN X C, SHI Z, QIU X P, et al. Adversarial multi-criteria learning for Chinese word segmentation[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. 2017:1193-1203.
[23]ZHAO S D, LIU T, ZHAO S C, et a1. A neural multitask learning framework to jointly model medical named entity recognition and normalization[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019:817-824.
[24]LI N, LUO L, DING Z Y, et al. Improving Chinese clinical named entity recognition using stroke ELMo and transfer learning[C]// Proceedings of the Evaluation Tasks at the China Conference on Knowledge Graph and Semantic Computing(CCKS-Tasks 2019). 2019.
[25]HAN H, WANG W Y, MAO B H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]// International Conference on Intelligent Computing. 2005:878-887.
[26]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems. 2017:5998-6008.
[27]PENNINGTON J, SOCHER R, MANNING C D. Glove: Global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Languageprocessing(EMNLP). 2014:1532-1543.
[28]MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J].arXiv preprint arXiv:1301.3781, 2013.
[29]毋雪雁,王水花,张煜东. K最近邻算法理论与应用综述[J]. 计算机工程与应用, 2017,53(21):1-7.
[30]CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016,4:357-370.
[31]巩敦卫,张永凯,郭一楠,等. 融合多特征嵌入与注意力机制的中文电子病历命名实体识别[J]. 工程科学学报, 2021,43(9):1190-1196.
[32]WANG Q, ZHOU Y M, RUAN T, et al. Incorporating dictionaries into deep neural networks for the Chinese clinical named entity recognition[J]. Journal of Biomedical Informatics, 2019,92:103-133.
[33]XING J J, ZHU K, ZHANG S D. Adaptive multi-task transfer learning for Chinese word segmentation in medical text[C]// Transactions of the Association for Computational Linguistics. 2018:3619-3630.
|