[1] LIANG G, HE W B, XU C, et al. Rumor identification in microblogging systems based on users’ behavior[J]. IEEE Transactions on Computational Social Systems, 2015,2(3):99-108.〖HJ0.54mm〗
[2] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on twitter[C]// Proceedings of the 20th International Conference on World Wide Web. 2011:675-684.
[3] YANG F, LIU Y, YU X H, et al. Automatic detection of rumor on Sina Weibo[C]// Proceedings of the 2012 ACM SIGKDD Workshop on Mining Data Semantics. 2012:91-97.
[4] JIN F, DOUGHERTY E, SARAF P, et al. Epidemiological modeling of news and rumors on Twitter[C]// Proceedings of the 7th Workshop on Social Network Mining and Analysis. 2013:61-69.
[5] LIU Y, XU S, TOURASSI G. Detecting rumors through modeling information propagation networks in a social media environment[C]// International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction. 2015:121-130.
[6] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
[7] 毛二松,陈刚,刘欣,等. 基于深层特征和集成分类器的微博谣言检测研究[J]. 计算机应用研究, 2016,33(11):3369-3373.
[8] 林荣蓉. 基于敏感词库的微博谣言识别研究[D]. 武汉:中南财经政法大学, 2018.
[9] LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: A lite BERT for self-supervised learning of language representations[J]. arXiv preprint arXiv:1909.11942, 2020.
[10]DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for languange understanding[J]. arXiv preprint arXiv: 1810.04805, 2019.
[11]MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016:3818-3824.
[12]YU F, LIU Q, WU S, et al. A convolutional approach for misinformation identification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017:3901-3907.
[13]HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
[14]孙王斌. 多特征融合的可移植谣言早期检测模型[J]. 计算机时代, 2020(9):11-16.
[15]CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). 2014:1724-1734
[16]FANG Y, GAO J, HUANG C, et al. Self multi-head attention-based convolutional neural networks for fake news detection[J]. PLOS ONE, 2019,14(9):1-13.
[17]潘德宇,宋玉蓉,宋 波. 一种新的考虑注意力机制的微博谣言检测模型[J]. 小型微型计算机系统, 2021,42(2):348-353.
[18]CHEN T, LI X, YING H Z, et al. Call attention to rumors: Deep attention based recurrent neural networks for early rumor detection[C]// Proceedings of the 2018 Pacific Asia Conference on Knowledge Discovery and Data Mining.2018:40-52.
[19]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). 2017:5998-6008.
[20]SONG C H, TU C C, CHENG Y, et al. CED: Credible early detection of social media rumors[J]. arXiv preprint arXiv:1811.04175, 2018
[21]MA J, GAO W, WEI Z Y, et al. Detect rumors using time series of social context information on microblogging websites[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 2015:1751-1754.
[22]李力钊,蔡国勇,潘角. 基于C-GRU的微博谣言事件检测方法[J]. 山东大学学报(工学版), 2018,49(2):102-106.
[23]尹鹏博,潘伟民,彭 成,等. 基于用户特征分析的微博谣言早期检测研究[J]. 情报杂志, 2020,39(7):81-86.
[24]LIN D Z, MA B, CAO D L, et al. Chinese microblog rumor detection based on deep sequence context[J]. Concurrency and Computation: Practice and Experience, 2019,31(23):e4508.1-e4508.12.
[25]刘政,卫志华,张韧弦. 基于卷积神经网络的谣言检测[J]. 计算机应用, 2017,37(11):3053-3056.
|