[1] 刘根荣. 共享经济:传统经济模式的颠覆者[J]. 经济学家, 2017(5):97-104.
[2] 胡姗,杨兴柱,王群. 国内外共享住宿研究述评[J]. 旅游科学, 2020,34(2):41-57.
[3] 国家信息中心. 中国共享住宿发展报告2020[EB/OL]. [2021-03-11]. http://www.sic.gov.cn/News/557/10549.htm.
[4] LEHTONEN S. Dow Jones falls as jobless claims jump; Tesla recovers after downgrade, while Airbnb IPO set to skyrocket122%[EB/OL]. [2021-04-05]. https://www.investors.com/market-trend/stock-market-today/dow-jones-stock-market-rally-tesla-stock-downgrade-airbnb-ipo.
[5] HOSSAIN M. Sharing economy: A comprehensive literature review[J]. International Journal of Hospitality Management, 2020,87.DOI:10.1016/j.ijhm.2020.102470.
[6] KARLSSON L, DOLNICAR S. Someone’s been sleeping in my bed[J]. Annals of Tourism Research, 2016,58(C):159-162.
[7] 梁晓蓓,徐真,李晶晶. 共享短租平台商家属性对消费者网络口碑的影响研究[J]. 数据分析与知识发现, 2018,2(11):46-53.
[8] BARNES S J, KIRSHNER S N. Understanding the impact of host facial characteristics on Airbnb pricing: Integrating facial image analytics into tourism research[J]. Tourism Management, 2021,83.DOI:10.1016/j.tourman.2020.104235.
[9] 赵燕飞,王勇. 考虑卖方用户部分多归属的双寡头双边平台增值服务与定价竞争策略研究[J]. 预测, 2020,39(4):76-82.
[10]张苇锟,杨明婉. 用户多归属、平台竞争与排他性交易[J]. 财经论丛, 2020(11):103-112.
[11]WU C H, CHAMNISAMPAN N. Platform entry and homing as competitive strategies under cross-sided network effects[J]. Decision Support Systems, 2021,140.DOI:10.1016/j.dss.2020.113428.
[12]XIE J P, ZHU W J, WEI L H, et al. Platform competition with partial multi-homing: When both same-side and cross-side network effects exist[J]. International Journal of Production Economics, 2021,233.DOI:10.1016/j.ijre.2020.108016.
[13]CARMAGNOLA F, CENA F. User identification for cross-system personalisation[J]. Information Sciences, 2009,179(1-2):16-32.
[14]吴铮,于洪涛,刘树新,等. 基于信息熵的跨社交网络用户身份识别方法[J]. 计算机应用, 2017,37(8):2374-2380.
[15]LI Y J, PENG Y, ZHANG Z, et al. A deep dive into user display names across social networks[J]. Information Sciences, 2018,447:186-204.
[16]刘东,吴泉源,韩伟红,等. 基于用户名特征的用户身份同一性判定方法[J]. 计算机学报, 2015,38(10):2028-2040.
[17]NIE Y P, JIA Y, LI S D, et al. Identifying users across social networks based on dynamic core interests[J]. Neurocomputing, 2016,210:107-115.
[18]LI Y J, ZHANG Z, PENG Y, et al. Matching user accounts based on user generated content across social networks[J]. Future Generation Computer Systems, 2018,83:104-115.
[19]FU H, ZHANG A, XIE X. Effective social graph deanonymization based on graph structure and descriptive information[J]. ACM Transactions on Intelligent Systems and Technology, 2015,6(4):1-29.
[20]VAN PHAM H, NGUYEN V T. A novel approach using context matching algorithm and knowledge inference for user identification in social networks[C]// Proceedings of the 4th International Conference on Machine Learning and Soft Computing. 2020:149-153.
[21]LI Y J, SU Z T, YANG J Q, et al. Exploiting similarities of user friendship networks across social networks for user identification[J]. Information Sciences, 2020,506:78-98.
[22]MAN T, SHEN H W, LIU S H, et al. Predict anchor links across social networks via an embedding approach[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016:1823-1829.
[23]YANG Y H. Web user behavioral profiling for user identification[J]. Decision Support Systems, 2010,49(3):261-271.
[24]SRIVASTAVA D K, ROYCHOUDHURY B. Words are important: A textual content based identity resolution scheme across multiple online social networks[J]. Knowledge-Based Systems, 2020,195.DOI:10.1016/j.knosys.2020.105624.
[25]LEVENSHTEIN V I. Binary codes capable of correcting deletions, insertions and reversals[J]. Soviet Physics Doklady, 1966,10(8):707-710.
|