[1] |
MCDANIEL B T, D'MELLO S K, KING B G, et al. Facial features for affective state detection in learning environments[C]// Proceedings of the 29th Annual Meeting of the Cognitive Science Society. 2007,29:467-472.
|
[2] |
D'MELLO S K, CRAIG S D, SULLINS J, et al. Predicting affective states expressed through an emote-aloud procedure from autotutor's mixed-initiative dialogue[J]. International Journal of Artificial Intelligence in Education, 2006,16(1):3-28.
|
[3] |
傅小兰. 情绪心理学[M]. 上海:华东师范大学出版社, 2016.
|
[4] |
STRONGMAN K T. 情绪心理学[M]. 张燕云,译. 沈阳:辽宁人民出版社, 1986.
|
[5] |
EKMAN P. 情绪的解析[M]. 杨旭,译. 海口:南海出版公司, 2008.
|
[6] |
李珊. 基于深度学习的真实世界人脸表情识别研究[D]. 北京:北京邮电大学, 2021.
|
[7] |
KAHOU S E, PAL C, BOUTHILLIER X, et al. Combining modality specific deep neural networks for emotion recognition in video[C]// Proceedings of the 15th ACM on International Conference on Multimodal Interaction. 2013:543-550.
|
[8] |
MOLLAHOSSEINI A, CHAN D, MAHOOR M H. Going deeper in facial expression recognition using deep neural networks[C]// Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). 2016. DOI: 10.1109/WACV.2016.7477450.
|
[9] |
YAO A B, CAI D Q, HU P, et al. HoloNet: Towards robust emotion recognition in the wild[C]// Proceedings of the 18th ACM International Conference on Multimodal Interaction. 2016:472-478.
|
[10] |
YANG H Y, CIFTCI U, YIN L J. Facial expression recognition by de-expression residue learning[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2018:2168-2177.
|
[11] |
YANG H Y, ZHANG Z, YIN L J. Identity-adaptive facial expression recognition through expression regeneration using conditional generative adversarial networks[C]// Proceedings of the 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018). 2018:294-301.
|
[12] |
LI Y, ZENG J B, SHAN S G, et al. Occlusion aware facial expression recognition using CNN with attention mechanism[J]. IEEE Transactions on Image Processing, 2019,28(5):2439-2450.
|
[13] |
WANG K, PENG X J, YANG J F, et al. Region attention networks for pose and occlusion robust facial expression recognition[J]. IEEE Transactions on Image Processing, 2020,29:4057-4069.
|
[14] |
LIU X F, VIJAYA KUMAR B V K, YOU J, et al. Adaptive deep metric learning for identity-aware facial expression recognition[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017:522-531.
|
[15] |
CAI J, MENG Z B, KHAN A S, et al. Island loss for learning discriminative features in facial expression recognition[C]// Proceedings of the 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018). 2018:302-309.
|
[16] |
LIU C H, TANG T H, LV K, et al. Multi-feature based emotion recognition for video clips[C]// Proceedings of the 2018 International Conference on Multimodal Interaction. 2018:630-634.
|
[17] |
WANG S, CHENG Z X, DENG X M, et al. Leveraging 3D blendshape for facial expression recognition using CNN[J]. Science China (Information Sciences), 2020,63(2):97-99.
|
[18] |
KIM D H, BADDAR W J, JANG J, et al. Multi-objective based spatio-temporal feature representation learning robust to expression intensity variations for facial expression recognition[J]. IEEE Transactions on Affective Computing, 2019,10(2):223-236.
|
[19] |
YAN W J, LI X B, WANG S J, et al. CASME Ⅱ: An improved spontaneous micro-expression database and the baseline evaluation[J]. PLoS One, 2014,9(1). DOI: 10.1371/journal.pone.0086041.
|
[20] |
VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004,57(2):137-154.
|
[21] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
|
[22] |
李泽琛,李恒超,胡文帅,等. 多尺度注意力学习的Faster R-CNN口罩人脸检测模型[J]. 西南交通大学学报, 2021,56(5):1002-1010.
|
[23] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// Proceedings of the 2016 European Conference on Computer Vision. 2016:21-37.
|
[24] |
王麟阁,蒋宝军,潘铁军. 基于层级注意力增进网络的多尺寸遮挡人脸检测[J]. 数据采集与处理, 2022,37(1):73-81.
|
[25] |
李保华,王海星. 基于增强卷积神经网络的尺度不变人脸检测方法[J]. 红外与激光工程, 2022,51(7):481-488.
|
[26] |
JING L L, YANG X D, TIAN Y L. Video you only look once: Overall temporal convolutions for action recognition[J]. Journal of Visual Communication and Image Representation, 2018,52:58-65.
|
[27] |
巢渊,刘文汇,唐寒冰,等. 基于改进YOLO-v4的室内人脸快速检测方法[J]. 计算机工程与应用, 2022,58(14):105-113.
|
[28] |
贺怀清,王进,惠康华,等. 基于YOLO的多尺度并行人脸检测算法[J]. 计算机工程与设计, 2020,41(9):2559-2565.
|
[29] |
YANG S, LUO P, LOY C C, et al. WIDER FACE: A face detection benchmark[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:5525-5533.
|
[30] |
JAIN V, LEARNED-MILLER E. FDDB: A benchmark for face detection in unconstrained settings[R]. University of Massachusetts, 2010.
|
[31] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
|
[32] |
LIU W Y, WEN Y D, YU Z D, et al. Large-margin softmax loss for convolutional neural networks[C]// Proceedings of the 2016 International Conference on Machine Learning. 2016:507-516.
|
[33] |
WANG S J, YAN W J, LI X B, et al. Micro-expression recognition using color spaces[J]. IEEE Transactions on Image Processing, 2015,24(12):6034-6047.
|
[34] |
WANG Y D, SEE J, PHAN R C W, et al. Efficient spatio-temporal local binary patterns for spontaneous facial micro-expression recognition[J]. PLoS One, 2015,10(5). DOI: 10.1371/journal.pone.0124674.
|
[35] |
LIU Y J, ZHANG J K, YAN W J, et al. A main directional mean optical flow feature for spontaneous micro-expression recognition[J]. IEEE Transactions on Affective Computing, 2016,7(4):299-310.
|
[36] |
马鸿霞,朱德全. 器以载道与学以成人:智能化时代教学价值的逻辑理路[J]. 中国电化教育, 2020(4):42-50.
|