[1] KAU L J, CHEN C S. A smart phone-based pocket fall accident detection, positioning, and rescue system[J]. IEEE Journal of Biomedical and Health Informatics, 2015,19(1):44-56.〖HJ1.09mm〗
[2] KUMAR V S, ACHARYA K G, SANDEEP B, et al. Wearable sensor-based human fall detection wireless system[C]// International Conference on Wireless Communication Networks and Internet of Things. 2018:217-234.
[3] GASPARRINI S, CIPPITELLI E, GAMBI E, et al. Proposal and experimental evaluation of fall detection solution based on wearable and depth data fusion[C]// International Conference on ICT Innovations. 2015:99-108.
[4] KWOLEK B, KEPSKI M. Human fall detection on embedded platform using depth maps and wireless accelerometer[J]. Computer Methods and Programs in Biomedicine, 2014,117(3):489-501.
[5] 肖雨晴,杨慧敏. 目标检测算法在交通场景中应用综述[J]. 计算机工程与应用, 2021,57(6):30-41.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥ Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[7] WU M H, YUE H H, WANG J, et al. Object detection based on RGC mask R-CNN[J]. IET Image Processing, 2020,14(8):1502-1508.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multi box detector[C]// European Conference on Computer Vision and Pattern Recognition. 2016:21-37.
[10]REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. Computer Science, 2018,4(1):1-6.
[11]JEONG J, PARK H, KWAK N. Enhancement of SSD by concatenating feature maps for object detection[C]// British Machine Vision Conference. 2017.
[12]吴雪,宋晓茹,高嵩,等. 基于深度学习的目标检测算法综述[J]. 传感器与微系统, 2021,40(2):4-7.
[13]邵慧翔,曾丹. 基于改进YOLO v3算法的水下小目标分类与识别[J]. 上海大学学报(自然科学版), 2021,27(3):481-491.
[14]刘丽,郑洋,付冬梅. 改进YOLO v3网络结构的遮挡行人检测算法[J]. 模式识别与人工智能, 2020,33(6):568-574.
[15]BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]// 2016 IEEE International Conference on Image Processing. 2016:3464-3468.
[16]CHEN R, TONG Y, LIANG R Y. Real-time generic object tracking via recurrent regression network[J]. IEICE Transactions on Information and Systems, 2020,E103-D(3):602-611.
[17]YAO G E, CHEN R, TONG Y, et al. Combining siamese network and regression network for visual tracking[J]. IEICE Transactions on Information and Systems, 2020,E103-D(8):1924-1927.
[18]DOAN T N, TRUONG M T. Real-time vehicle detection and counting based on YOLO and DeepSORT[C]// International Conference on Knowledge and Systems Engineering. 2020:67-72.
[19]GAO C Q, WANG L, XIAO Y X, et al. Infrared small-dim target detection based on markov random field guided noise modeling[J]. Pattern Recognition, 2018,76:463-475.
[20]TSANG W H, KWOK T Y, ZURADA J M. Generalized core vector machines[J]. IEEE Transactions on Neural Networks, 2006,17(5):1126-1140.
[21]TONG Y, CHEN R, LIANG R Y. Unconstrained facial expression recognition based on feature enhanced CNN and cross-layer LSTM[J]. IEICE Transactions on Information and Systems, 2020,E103-D(11):1-4.
[22]杨雪旗,唐旭,章国宝,等. 基于YOLO网络的人体跌倒检测方法[J]. 扬州大学学报(自然科学版), 2019,22(2):61-64.
[23]曹建荣,吕俊杰,武欣莹,等. 融合运动特征和深度学习的跌倒检测算法[J]. 计算机应用, 2021,41(2):583-589.
[24]LU N, WU Y D, FENG L, et al. Deep learning for fall detection: Three-dimensional CNN combined with LSTM on video kinematic data[J]. IEEE Journal of Biomedical and Health Informatics, 2019,23(1):314-323.
|