[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
[2] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[3] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[4] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[5] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[6] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
[7] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:4510-4520.
[8] HOWARD A, SANDLER M, CHEN B, et al. Searching for mobileNetV3[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. 2019:1314-1324.
[9] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:6848-6856.
[10]MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:122-138.
[11]WOO S, PARK J, LEE J Y. CBAM: Convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:3-19.
[12]LI X, WANG W H, HU X L, et al. Selective kernel networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:510-519.
[13]HU J, SHEN L, ALBANIE S, et al. Gather-excite: Exploiting feature context in convolutional neural networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018:9423-9433.
[14]SAINI R, JHA N K, DAS B, et al. ULSAM: Ultra-lightweight subspace attention module for compact convolutional neural networks[C]// The 2020 IEEE Winter Conference on Applications of Computer Vision. 2020:1616-1625.
[15]MA X, GUO J D, TANG S H, et al. DCANet: Learning connected attentions for convolutional neural networks[J]. arXiv preprint arXiv:2007.05099, 2020.
[16]PARK J, WOO S, LEE J Y, et al. BAM: Bottleneck attention module[J]. arXiv preprint arXiv:1807.06514, 2018.
[17]WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7794-7803.
[18]CAO Y, XU J R, LIN S, et al. GCNet: Non-local networks meet squeeze-excitation networks and beyond[J]. arXiv preprint arXiv:1904.11492, 2019.
[19]WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6450-6458.
[20]RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.
[21]KRAUSE J, STARK M, DENG J, et al. 3D object representations for fine-grained categoryization[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops. 2013:554-561.
[22]KHOSLA A, JAYADEVAPRAKASH N, YAO B P, et al. Novel dataset for fine-grained image categorization: Stanford dogs[C]// Proc. CVPR Workshop on Fine-Grained Visual Categorization(FGVC). 2011.
[23]RAMACHANDRAN P, PARMAR N, VASWANI A, et al. Stand-alone self-attention in vision models[J]. arXiv preprint arXiv:1906.05909, 2019.
[24]CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-CAM+〖KG-*3〗+: Generalized gradient-based visual explanations for deep convolutional networks[C]// 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018:839-847.
|