[1] BATMAZ Z, YUREKLI A, BILGE A, et al. A review on deep learning for recommender systems: Challenges and remedies[J]. Artificial Intelligence Review, 2019,52(1):1-37.
[2] ADOMAVICIUS G, TUZHILIN A. Context-aware recommender systems[M]// Recommender Systems Handbook. Springer, Boston, MA, 2011:217-253.
[3] 〖JP+1〗BALABANOVIC M, SHOHAM Y. Fab: Content-based, collaborative recommendation[J]. Communications of the ACM, 1997,40(3):66-72.
[4] BURKE R. Hybrid recommender systems: Survey and experiments[J]. User Modeling and User-adapted Interaction, 2002,12(4):331-370.
[5] RENDLE S. Factorization machines[C]// The 10th IEEE International Conference on Data Mining. 2010:995-1000.
[6] JUAN Y, ZHUANG Y, CHIN W S, et al. Field-aware factorization machines for CTR prediction[C]// 2016 ACM Conference on Recommender Systems. 2016:43-50.
[7] GUO H F, TANG R M, YE Y M, et al. DeepFM: A factorization-machine based neural network for CTR prediction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017:1725-1731.
[8] 窦羚源,王新华,孙克. 融合标签特征和时间上下文的协同过滤推荐算法[J]. 小型微型计算机系统, 2016,37(1):48-52.
[9] 黄文明,卫万成,张健,等. 基于注意力机制与评论文本深度模型的推荐方法[J]. 计算机工程, 2019,45(9):176-182.
[10]郁豹,李振华,张凯,等. 基于DeepFM模型的广告推荐系统研究[J]. 计算机应用与软件, 2019,36(7):307-310.
[11]黎丹雨. 基于多特征融合的电影推荐系统[J]. 计算机与现代化, 2019(8):121-126.
[12]谢浩然,卫巍,杨志辉,等. 基于TF-IDF的新型广播电视节目协同推荐流程[J]. 计算机与现代化, 2019(9):65-71.
[13]吴韦俊,李烨. 神经因子分解机推荐模型改进研究[J].软件导刊, 2020,19(4):115-118.〖HJ1.83mm〗
[14]崔鑫. 基于异构信息网络的推荐系统[J]. 计算机与现代化, 2020(12):13-19.
[15]汤小月,周康,王凯. 一种空间上下文感知的提及目标推荐方法[J]. 软件学报, 2020,31(4):1189-1211.
[16]陈劲松,孟祥武,纪威宇,等. 基于多维上下文感知图嵌入模型的兴趣点推荐[J]. 软件学报, 2020,31(12):3700-3715.
[17]HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based Recommendations with Recurrent Neural Networks[J/OL]. (2015-11-21)[2016-03-29]. https://arxiv.org/abs/1511.06939.
[18]LIU B, WEI Y, ZHANG Y, et al. Transferable contextual bandit for cross-domain recommendation[C]// Proceedings of the 2018 AAAI Conference on Artificial Intelligence. 2018:3619-3626.
[19]BENDADA W, SALHA G, BONTEMPELLI T. Carousel personalization in music streaming APPs with contextual bandits[C]// The 14th ACM Conference on Recommender Systems. 2020:420-425.
[20]MA Y F, NARAYANASWAMY B, LIN H B, et al. Temporal-contextual recommendation in real-time[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020:2291-2299.
[21]HANSEN C, HANSEN C, MAYSTRE L, et al. Contextual and sequential user embeddings for large-scale music recommendation[C]// The 14th ACM Conference on Recommender Systems. 2020:53-62.
[22]WU S, TANG Y Y, ZHU Y Q, et al. Session-based recommendation with graph neural networks[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019,33:346-353.
[23]SANTANA M R O, MELO L C, CAMARGO F H F, et al. Contextual meta-bandit for recommender systems selection[C]// The 14th ACM Conference on Recommender Systems. 2020:444-449.
[24]JRV P. Predictability limits in session-based next item recommendation[C]// Proceedings of the 13th ACM Conference on Recommender Systems. 2019:146-150.
[25]HE X, AN B, LI Y H, et al. Contextual user browsing bandits for large-scale online mobile recommendation[C]// The 14th ACM Conference on Recommender Systems. 2020:63-72.
|