[1] PRIETO A, PRIETO B, ORTIGOSA E, et al. Neural networks: An overview of early research, current frameworks and new challenges[J]. Neurocomputing, 2016,214:242-268.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
[3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[4] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[5] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[6] QI W J, LIU X, ZHAO J. Flower classification based on local and spatial visual cues[C]// Proceedings of the 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE). 2012:670-674.
[7] 王丽雯. 基于AlexNet的Oxford花卉识别方法[J]. 科技视界, 2017(14):83.
[8] 刘德建. 基于LeNet的花卉识别方法[J]. 电子技术与软件工程, 2015(23):13-14.
[9] 林君宇,李奕萱,郑聪尉,等. 应用卷积神经网络识别花卉及其病症[J]. 小型微型计算机系统, 2019,40(6):1330-1335.
[10]刘嘉政. 基于深度迁移学习模型的花卉种类识别[J]. 江苏农业科学, 2019,47(20):231-236.
[11]吴丽娜,王林山. 改进的LeNet-5模型在花卉识别中的应用[J]. 计算机工程与设计, 2020,41(3):850-855.
[12]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. 2015:448-456.
[13]杨剑,刘方涛,张涛,等. 基于改进型残差网络烟雾图像识别[J]. 科学技术与工程, 2019,19(32):236-243.
[14]刘秀丽,徐小力. 基于深度信念网络的风电机组齿轮箱故障诊断方法[J]. 可再生能源, 2017,35(12):1862-1868.
[15]ZHU X Z, CHENG D Z, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019:6687-6696.
[16]梁斌,刘全,徐进,等. 基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展, 2017,54(8):1724-1735.
[17]黎万义,王鹏,乔红. 引入视觉注意机制的目标跟踪方法综述[J]. 自动化学报, 2014,40(4):561-576.
[18]CHOI H, CHO K, BENGIO Y. Fine-grained attention mechanism for neural machine translation[J]. Neurocomputing, 2018,284:171-176.
[19]李红艳,李春庚,安居白,等. 注意力机制改进卷积神经网络的遥感图像目标检测[J]. 中国图象图形学报, 2019,24(8):1400-1408.
[20]段迅达,韩晓红. 基于注意力机制与空间金字塔池化的行人属性识别[J]. 济南大学学报(自然科学版), 2020,34(4):342-349.
[21]WOO S, PARK J, LEE J, et al. CBAM: Convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:3-19.
[22]李彦冬,郝宗波,雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016,36(9):2508-2515.
[23]庄福振,罗平,何清,等. 迁移学习研究进展[J]. 软件学报, 2015,26(1):26-39.
[24]郑远攀,李广阳,李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019,55(12):20-36.
|