[1] 彭路,朱君,邹云峰. 基于深度神经网络的电力客户诉求预判[J]. 计算机与现代化, 2020(5):22-28.
[2] 钟幼平,杨威,周洋,等. 基于远程监控图像的绝缘子覆冰检测算法[J]. 计算机与现代化, 2014(5):18-23.
[3] 饶伟. 人工智能技术在电气自动化控制中的应用[J]. 通信电源技术, 2019,36(6):110-111.
[4] 邓欣宇,王守相,郭陆阳,等. 人工智能方法在配用电领域的应用[J]. 供用电, 2019,36(1):1-9.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[6] REDMON J, FARHADI A. Yolo9000: Better, faster, stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. 2016:21-37.
[8] FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv:1701.06659, 2017.
[9] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[10]GIRSHICK R. Fast R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. 2015:1440-1448.
[11]REN S Q, HE K M, GIRSHICK R, et al. Faste R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39:1137-1149.
[12]熊小萍,许爽,蒙登越,等. 基于Faster R-CNN的输电线路缺陷识别模型研究[J]. 自动化与仪器仪表, 2020(3):1-6.
[13]刘召,张黎明,耿美晓,等. 基于改进的Faster R-CNN高压线缆目标检测方法[J]. 智能系统学报, 2019,14(4):627-634.
[14]金昊,康宇哲,齐希阳,等. 基于Faster R-CNN的高压电线缺陷检测方法[J]. 计算机应用, 2019,39(S2):97-102.
[15]张迪,樊绍胜. 基于YOLO V3的输电线路故障检测方法[J]. 自动化技术与应用, 2019,38(7):125-129.
[16]LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// IEEE Conference on Computer Vision & Pattern Recognition. 2017:936-944.
[17] 赵小鱼,徐正飞,付渊. 一种适用于智能变电站巡检机器人的异物检测算法研究[J]. 现代电子技术, 2015(10):124-127.
[18]LI J F, WANG Q R, LI M. Electric equipment image recognition based on deep learning and random forest[J]. High Voltage Engineering, 2017,43(11):3705-3711.
[19]YAO N, CHENG K. Electric power equipment image recognition based on deep forest learning model with few samples[C]// Proceedings of 2019 World Congress on Computational Intelligence, Engineering and Information Technology. 2019:1349-1354.
[20]纪超,黄新波,曹雯,等. 改进的Fast-RCNN模型在绝缘子特征检测中的研究[J]. 计算机与现代化, 2019(4):59-64.
[21]楚瀛,李帅奇. 基于联合特征的变电站设备图像识别[J]. 电力科学与技术学报, 2018,33(1):102-107.
[22]姚楠,蔡越,苗佳. 基于智能图像的变电站设备绝缘子破裂裂纹识别研究[J]. 现代电子, 2017,40(22):176-178.
[23]WEI Q J, WANG W B. Research on image retrieval using deep convolutional neural network combining L1 regularization and PRelu activation function[C]// IOP Conference Series: Earth and Environmental Science. 2017,68:012156.
[24]MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014:2204-2212.
|