[1] VAN NORDEN A G W, DE LAAT K F, GONS R A R, et al. Causes and consequences of cerebral small vessel disease. The RUN DMC study: A prospective cohort study. Study rationale and protocol[J]. BMC Neurology, 2011,11: Article No. 29, DOI: 10.1186/1471-2377-11-29.
[2] SCHOONHEIM M M, VIGEVENO R M, RUEDA LOPES F C, et al. Sex-specific extent and severity of white matter damage in multiple sclerosis: Implications for cognitive decline[J]. Human Brain Mapping, 2014,35(5):2348-2358.〖HJ1.43mm〗
[3] MARSHALL G A, SHCHELCHKOV E, KAUFER D I, et al. White matter hyperintensities and cortical acetylcholinesterase activity in parkinsonian dementia[J]. Acta Neurologica Scandinavica, 2006,113(2):87-91.
[4] WEINSTEIN G, BEISER A S, DECARLI C, et al. Brain imaging and cognitive predictors of stroke and Alzheimer disease in the Framingham Heart Study[J]. Stroke, 2013,44(10):2787-2794.
[5] HIRONO N, KITAGAKI H, KAZUI H, et al. Impact of white matter changes on clinical manifestation of Alzheimer’s disease: A quantitative study[J]. Stroke, 2000,31(9):2182-2188.
[6] SMITH C D, SNOWDON D A, WANG H, et al. White matter volumes and periventricular white matter hyperintensities in aging and dementia[J]. Neurology, 2000,54(4):838-842.
[7] CALIGIURI M E, PERROTTA P, AUGIMERI A, et al. Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: A review[J]. Neuroinformatics, 2015,13(3):261-276.
[8] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18(7):1527-1554.
[9] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[10]GHAFOORIAN M, KARSSEMEIJER N, HESKES T, et al. Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities[J]. Scientific Reports, 2017,7: Article No. 5110, DOI: 10.1038/s41598-01705300-5.
[11]AKKUS Z, GALIMZIANOVA A, HOOGI A, et al. Deep learning for brain MRI segmentation: State of the art and future directions[J]. Journal of Digital Imaging, 2017,30(4):449-459.
[12]RACHMADI M F, DEL CARMEN VALDES-HERNANDEZ M, LEONORA FATIMAH AGAN M, et al. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology[J]. Computerized Medical Imaging and Graphics, 2018,66:28-43.
[13]LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015:3431-3440.
[14]RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015:234-241.
[15]CICEK O, ABDULKADIR A, LIENKAMP S S, et al. 3D U-net: Learning dense volumetric segmentation from sparse annotation[C]// Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention. 2016:424-432.
[16]XU Y C, GERAUD T, PUYBAREAU E, et al. White matter hyperintensities segmentation in a few seconds using fully convolutional network and transfer learning[C]// Proceedings of the 2017 International MICCAI Brainlesion Workshop. 2017:501-514.
[17]WANG Z W, SMITH C D, LIU J D. Ensemble of multi-sized FCNs to improve white matter lesion segmentation[C]// Proceedings of the 2018 International Workshop on Machine Learning in Medical Imaging. 2018:223-232.
[18]ZHANG Y, CHEN W L, CHEN Y F, et al. A post-processing method to improve the white matter hyperintensity segmentation accuracy for randomly-initialized U-net[C]// Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). 2018, DOI: 10.1109/ICDSP.2018.8631858.
[19]WU J, ZHANG Y, WANG K, et al. Skip connection U-net for white matter hyperintensities segmentation from MRI[J]. IEEE Access, 2019,7:155194-155202.
[20]JEONG Y, RACHMADI M F, DEL CARMEN VALDES HERNANDEZ M, et al. Dilated saliency U-net for white matter hyperintensities segmentation using irregularity age map[J]. Frontiers in Aging Neuroscience, 2019,11: Article No. 150, DOI: 10.3389/fnagi.2019.00150.
[21]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[22]ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6230-6239.
[23]BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]// Proceedings of the 3rd International Conference on Learning Representations. 2015.
[24]FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:3141-3149.
[25]BENTO M, DE SOUZA R, LOTUFO R, et al. WMH segmentation challenge: A texture-based classification approach[C]// Proceedings of the 2017 International MICCAI Brainlesion Workshop. 2017:489-500.
[26]JIN D K, XU Z Y, HARRISON A P, et al. White matter hyperintensity segmentation from T1 and FLAIR images using fully convolutional neural networks enhanced with residual connections[C]// Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 2018:1060-1064.
[27]刘亚龙,李洁,王颖,等. 基于精细化残差U-Net的新生儿局灶性脑白质损伤分割模型[J]. 计算机应用, 2019,39(12):3456-3461.
|