[1] MMOLI F, SAPIRO G. A theoretical and computational framework for isometry invariant recognition of point cloud data[J]. Foundations of Computational Mathematics, 2005,5(3):313-347.
[2] CHEN L, LI Q Q, ZHU Q W, et al. 3D LiDAR point cloud based intersection recognition for autonomous driving[C]// Proceedings of the IEEE Intelligent Vehicles Symposium. 2012:456-461.
[3] 董敏,陈铁桩,杨浩. 基于Mesh的地面激光点云分离方法研究[J]. 计算机工程, 2019,45(6):32-36.
[4] WANG J H, LINDENBERGH R, MENENTI M. SigVox: A 3D feature matching algorithm for automatic street object recognition in mobile laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,128:111-129.
[5] SFIKAS K, PRATIKAKIS I, THEOHARIS T. Ensemble of PANORAMA-based convolutional neural networks for 3D model classification and retrieval[J]. Computers & Graphics, 2017,71:208-218.
[6] XU D F, ANGUELOV D, JAIN A. PointFusion: Deep sensor fusion for 3D bounding box estimation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:244-253.
[7] PATHAK K, BIRK A, VASKEVICIUS N, et al. Fast registration based on noisy planes with unknown correspondences for 3-D mapping[J]. IEEE Transactions on Robotics, 2010,26(3):424-441.
[8] VETRIVEL A, GERKE M, KERLE N, et al. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,140:45-59.
[9] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015,521(7553): 436-444.
[10]SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]// Proceedings of the IEEE International Conference on Computer Vision. 2015:945-953.
[11]KANEZAKIA, MATSUSHITA Y, NISHIDA Y. RotationNet: Joint object categorization and pose estimation using multiviews from unsupervised viewpoints[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:5010-5019.
[12]MATURANA D, SCHERER S. VoxNet: A 3D convolutional neural network for real-time object recognition[C]// Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2015:922-928.
[13]WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: A deep representation for volumetric shapes[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:1912-1920.
[14]CHARLESR Q, SU H, MO K C, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:77-85.
[15]CHARLESR Q, LI Y, SU H, et al. PointNet+〖KG-*3〗+: Deep hierarchical feature learning on point sets in a metric space[C]// Advances in Neural Information Processing Systems. 2017:5099-5108.
[16]ITTI L, KOCH C. Computational modelling of visual attention[J]. Nature Reviews Neuroscience, 2001,2(3):194-203.
[17]LUONG M T, PHAM H, MANNING C D. Effective approaches to attention-based neural machine translation[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2015:1412-1421.
[18]CHEN L C, YANG Y, WANG J, et al. Attention to scale: Scale-aware semantic image segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:3640-3649.
[19]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32th International Conference on Machine Learning. 2015:448-456.
[20]NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]// Proceedings of the 27th International Conference on Machine Learning.2010:807-814.
[21]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[22]LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[23]SIMARD P, STEINKRAUS D, PLATT J C. Best practices for convolutional neural networks applied to visual document analysis[C]// Proceedings of the 7th International Conference on Document Analysis and Recognition. 2003:958-963.
|