计算机与现代化

• 算法设计与分析 • 上一篇    下一篇

基于混合全局池化的回环检测算法

  

  1. (北京邮电大学可信分布式计算与服务教育部重点实验室,北京100876)
  • 收稿日期:2019-07-08 出版日期:2020-04-22 发布日期:2020-04-24
  • 作者简介:宋周锐(1994-),男,安徽太湖人,硕士研究生,研究方向:视觉SLAM,卷积神经网络加速,E-mail: 957109192@qq.com。

Loop Closure Detection Algorithm Based on Mixed Global Pooling

  1. (Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education,
    Beijing University of Posts and Telecommunications, Beijing 100876, China)
  • Received:2019-07-08 Online:2020-04-22 Published:2020-04-24

摘要: 基于深度学习的回环检测算法已被验证性能优于传统方法。然而深度学习计算量大,在移动机器人上往往难以部署大型卷积神经网络,而小型卷积神经网络在大型场景中表现欠佳。对此,本文提出一种将大型卷积神经网络部署在移动机器人上的方案。首先,利用混合全局池化层将特征图转换为特征向量,实验表明该方法与其他更复杂方法性能相当,计算更简单。然后提出一种基于块浮点数的卷积神经网络加速引擎,可显著地降低运算能耗,在不需要重新训练的情况下,几乎没有导致性能损失。

关键词: 视觉同步定位与建图, 回环检测, 深度学习, 卷积神经网络加速, 移动机器人

Abstract: The deep learning based loop closure detection algorithm has been verified to be superior to traditional methods. However, the computation burden of deep learning is heavy, so it is often difficult to deploy large convolutional neural networks on mobile robots, while small convolutional neural networks perform poorly in large scenes. Therefore, this paper proposes a scheme to deploy large convolutional neural networks on mobile robots. Firstly, the feature graph is transformed into the feature vector by using the mixed global pooling layer. Experiments show that the performance of this method is equivalent to that of other more complex methods and the calculation is simpler. Then, a block-based floating-point convolutional neural network acceleration engine is proposed, which significantly reduces the computational energy consumption and causes almost no performance loss without retraining.

Key words: Key words: visual SLAM, loop closure, deep learning, CNN accelerator, mobile robot

中图分类号: