计算机与现代化 ›› 2025, Vol. 0 ›› Issue (11): 80-88.doi: 10.3969/j.issn.1006-2475.2025.11.010

• 图像处理 • 上一篇    下一篇

LSGI-YOLOv8:基于轻量化YOLOv8的瓷砖表面缺陷检测算法

  


  1. (1.东华理工大学信息工程学院,江西 南昌 330013; 2.东华理工大学机械与电子工程学院,江西 南昌 330013)
  • 出版日期:2025-11-20 发布日期:2025-11-24
  • 作者简介: 作者简介:杨安博(1998—),男,河南周口人,硕士研究生,研究方向:计算机视觉,E-mail: 2862916117@qq.com; 通信作者:钟国韵(1979—),男,浙江金华人,教授,博士,研究方向:计算机视觉,图像音视频处理,E-mail:gyzhong@ecut.edu.cn.。
  • 基金资助:
    基金项目:国家自然科学基金资助项目(62162002); 江西省主要学科学术和技术带头人领军人才项目(20225BCJ22004); 江西省核地学数据科学与系统工程技术研究中心项目(JETRCNGDSS202206)。
      

LSGI-YOLOv8: Ceramic Tile Surface Defect Detection Algorithm Based on Lightweight YOLOv8


  1. (1. School of Information Engineering, East China University of Technology, Nanchang 330013, China; 
    2. School of Mechanical and Electrical Engineering, East China University of Technology, Nanchang 330013, China)
  • Online:2025-11-20 Published:2025-11-24

摘要: 摘要:针对瓷砖表面缺陷小、花纹复杂,造成瓷砖缺陷检测精度低、速度慢等问题,本文提出一种基于改进YOLOv8的瓷砖表面缺陷检测算法。该算法设计一种融合LSKA (Large Separable Kernel Attention)注意力机制的空间池化层模块LSPPF,提高模型的多尺度特征提取能力;设计一种轻量级特征融合网络SimBiFPN,消减加权双向特征金字塔网络中的跳跃连接次数,加强模型对小目标缺陷特征的表示,并减少模型的参数量;提出一种基于新的轻量级卷积GSConv (Grouped Shuffle Convolution)和深度可分离卷积(Depthwise Separable Convolution, DSConv)的D-Slim-Neck模块,用于替换传统Slim-Neck模块,显著降低模型计算量和复杂度;针对瓷砖表面缺陷形状不一的问题,提出一种带有辅助框的损失函数Inner_CIoU,通过调整尺度因子来控制辅助框的大小,进一步提高算法的检测精度。实验结果表明,改进后算法的平均精度均值达到90.3%,比YOLOv8提高2.1百分点,参数量和计算量分别减少6.7%和13.6%,并达到了与其他先进算法相媲美的瓷砖表面缺陷检测性能。


关键词: 关键词:瓷砖缺陷检测, YOLOv8, 大核注意力机制, 多尺度特征融合, GSConv

Abstract: Abstract: Aiming at the problem of low detection accuracy and slow detection speed of ceramic tile defect detection caused by small defects and complex patterns on the surface of ceramic tiles, a ceramic tile surface defect detection algorithm based on improved YOLOv8 is proposed. The algorithm designs a spatial pooling layer module LSPPF incorporating the LSKA (Large Separable Kernel Attention) mechanism to improve the multi-scale feature extraction capability of the model; a lightweight feature fusion network SimBiFPN is designed to reduce the number of jump connections in the weighted bidirectional feature pyramid network, enhance the model’s representation of small target defect features, and reduce the number of model parameters; a D-Slim-Neck module based on lightweight convolution GSConv (Grouped Shuffle Convolution) and depth-separable convolution (Depthwise Separable Convolution, DSConv) is proposed for replacing the traditional Slim-Neck module to significantly reduce the model computation and complexity; to address the problem of different shapes of tile surface defects, a loss function Inner_CIoU with an auxiliary box is proposed to control the size of the auxiliary frame by adjusting the scale factor to further improve the detection accuracy of the algorithm. The experimental results show that the mean average precision of the improved algorithm reaches 90.3%, which is 2.1 percentage points higher than YOLOv8, and the number of parameters and calculations are reduced by 6.7% and 13.6% respectively, achieving tile surface defect detection performance comparable to other advanced algorithms.

Key words: Key words: ceramic tile defect detection, YOLOv8, large kernel attention mechanism, multi-scale feature fusion, GSConv

中图分类号: