计算机与现代化 ›› 2025, Vol. 0 ›› Issue (07): 106-111.doi: 10.3969/j.issn.1006-2475.2025.07.015

• 算法设计与分析 • 上一篇    下一篇

基于改进RT-DETR的轻量级火焰检测算法

  

  1. (重庆师范大学计算机与信息科学学院,重庆 401331)
  • 出版日期:2025-07-22 发布日期:2025-07-22
  • 作者简介: 作者简介:吴栋(2001—),男,湖北黄石人,硕士研究生,研究方向:计算机视觉,E-mail: 3045875724@qq.com; 范永胜(1970—),男,重庆人,副教授,博士,研究方向:计算机视觉,E-mail: 157544651@qq.com。
  • 基金资助:
      基金项目:国家自然科学基金青年资助项目(62306054)

Lightweight Flame Detection Algorithm Based on Improved RT-DETR


  1. (School of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China)
  • Online:2025-07-22 Published:2025-07-22

摘要: 摘要:为了提高火焰检测的精度,同时让模型更加轻量化,提出一种轻量级RT-DETR火焰检测算法。首先,选择EfficientVit作为特征提取网络,减少模型计算量与复杂度。其次,设计一种高效混合编码器,旨在降低模型参数量和计算量的同时,保持检测精度。该编码器由LPE-AIFI模块和CGAFusion模块组成,其中LPE-AIFI模块专注于处理深层特征,而CGAFusion模块通过多尺度特征融合提高模型的检测能力。最后,引入边界框回归损失函数MDPIoU,进一步提高算法精度。实验结果表明,改进后的模型浮点运算数(FLOPs)比原始模型减少了48.8%,参数量减少了43.4%。在达到轻量化的基础上,mAP@0.5值达到88.6%,mAP@0.5:0.95达到67.4%,相较基准模型分别提升了2.2百分点和2.7百分点。 



关键词: 关键词:火焰检测, RT-DETR, EfficientViT, 轻量化, 多尺度特征融合

Abstract:
Abstract: In order to improve the accuracy of flame detection and make the model lighter, a lightweight RT-DETR flame detection algorithm is proposed. First, EfficientVit is selected as the feature extraction network to reduce model computation and complexity. Secondly, an efficient hybrid encoder is designed to reduce the number of model parameters and the amount of calculation while maintaining the detection accuracy. The encoder consists of the LPE-AIFI module, which focuses on processing deep features, and the CGAFusion module, which improves the detection capability of the model through multi-scale feature fusion. Finally, the boundary box regression loss function MDPIoU is introduced to further improve the accuracy of the algorithm. The experimental results show that the floating-point operations (FLOPs) of the improved model are reduced by 48.8% and the number of parameters by 43.4% compared with the original model. On the basis of lightweight, mAP@0.5 reaches 88.6% and mAP@0.5:0.95 reaches 67.4%, which are respectively 2.2 percentage points and 2.7 percentage points higher than the benchmark model.

Key words: Key words: flame detection, RT-DETR, EfficientViT, lightweight, multi-scale feature fusion

中图分类号: