计算机与现代化 ›› 2025, Vol. 0 ›› Issue (06): 79-85.doi: 10.3969/j.issn.1006-2475.2025.06.013

• 图像处理 • 上一篇    下一篇

基于可变形卷积与注意力机制的复杂火灾检测

  

  1. (1.中北大学软件学院,山西 太原 030051; 2.武警山西总队,山西 太原 030006)
  • 出版日期:2025-06-30 发布日期:2025-07-01
  • 作者简介:作者简介:郝荣荣(2002—),女,山西灵丘人,硕士研究生,研究方向:目标检测,E-mail: 2825977216@qq.com; 通信作者:马巧梅(1969—),女,山西灵石人,教授,博士,研究方向:图像处理,算法优化,E-mail: maqiaomei@nuc.edu.cn; 谭亚军(2000—),男,山西孝义人,硕士研究生,研究方向:目标检测,E-mail: 1147323942@qq.com; 石桓印(1994—),男,山西交城人,硕士研究生,研究方向:网络安全,E-mail:695781500@qq.com。
  • 基金资助:
    基金项目:山西省自然科学基金资助项目(20210302123019)

Complex Fire Detection Based on Deformable Convolutions and Attention Mechanisms

  1. (1. School of Software Engineering, North University of China, Taiyuan 030051, China;
    2. Shanxi Armed Police Corps, Taiyuan 030006, China)
  • Online:2025-06-30 Published:2025-07-01

摘要: 摘要:针对复杂场景下的火灾图像中出现的火焰烟雾部分被遮挡、火焰烟雾与背景难分辨导致检测精度低等问题,提出一种检测模型CFD-YOLO(Complex Fire Detection YOLO)。该模型以YOLOv8模型为基准框架,首先,在主干网络部分将可变形卷积DCNv4与C2f模块相结合,利用DCNv4的无界动态权重机制,显著提升了对火灾图像中复杂形变和非刚性特征的捕捉能力;其次,在Neck部分引入了基于交叉注意力的深层语义融合模块PSFM,通过对火灾图像不同特征层次进行深度语义融合,实现自适应的特征增强;最后,在Head部分,通过遮挡感知注意力SEAM对检测头进行改进,得到能够识别遮挡的检测头,有效改善复杂环境中火焰和烟雾被遮挡的问题;损失函数使用可动态调节正负样本系数的SlideLoss,降低误检率。在自建数据集和公开数据集下的实验结果表明,mAP指标分别达到了80.33%、88.28%,相较于原YOLOv8网络分别提升了3.85、3.91个百分点,与当前主流模型相比也具有良好的检测性能。




关键词: 关键词:火灾检测, 深层语义融合模块, 注意力机制, 可变形卷积, YOLOv8

Abstract: Abstract: To address the issues of flame and smoke occlusion, difficulty distinguishing between flame/smoke and background, and low detection accuracy in complex fire scenarios, a detection model called CFD-YOLO(Complex Fire Detection YOLO)has been proposed. This model is based on the YOLOv8 framework, with several enhancements. Firstly, in the backbone network, the model combines Deformable Convolution DCNv4 with the C2f module, leveraging DCNv4's unconstrained dynamic weighting mechanism to significantly improve the capture of complex deformations and non-rigid features in fire images. Secondly, in the neck section, a cross-attention-based deep semantic fusion module, PSFM, is introduced to achieve adaptive feature enhancement by deeply fusing different feature layers of fire images. Finally, in the head section, the occlusion-aware attention SEAM is used to improve the detection head, allowing it to effectively handle occlusions of flames and smoke in complex environments. The loss function employed is SlideLoss, which dynamically adjusts the positive and negative sample coefficients to reduce false detection rates. The experimental results showed that the mAP index reached 80.33% and 88.28% respectively in the self built dataset and public dataset, which were 3.85 and 3.91 percentage points higher than the original YOLOv8 network. Compared with the current mainstream models, it also has good detection performance.

Key words: Key words: fire detection, deep semantic fusion module, attention mechanism, deformable convolution, YOLOv8

中图分类号: