计算机与现代化 ›› 2023, Vol. 0 ›› Issue (08): 18-24.doi: 10.3969/j.issn.1006-2475.2023.08.004

• 人工智能 • 上一篇    下一篇

一种用于机场特种车辆作业的环境目标识别方法

  

  1. (南京航空航天大学计算机科学与技术学院,江苏 南京 211106)
  • 出版日期:2023-08-30 发布日期:2023-09-13
  • 作者简介:刘续(1997—),女,河南平顶山人,硕士研究生,研究方向:深度学习,民航特种设备研发,E-mail: xu_liu@nuaa.edu.cn; 查可可(1997—),女,博士研究生,研究方向:深度学习,深空探测与自主导航,E-mail: zhakeke@nuaa.edu.cn。
  • 基金资助:
    国家重点研发计划课题(2017YFB0802303); 国家自然科学基金资助项目(62076127)

An Environmental Target Recognition Method for Airport Special Vehicle Operation

  1. (College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)
  • Online:2023-08-30 Published:2023-09-13

摘要: 摘要:机场特种车辆自主安全地运行对于保障飞行区安全至关重要。目前,机场特种车辆作业主要通过驾驶员操作和机场管制员的目视指挥完成,存在过度依赖人力、自主性较低等问题,为提高其安全性和自主性,本文提出一种用于机场特种车辆作业基于3D点云分割的目标识别方法。首先,基于仿真技术构建飞行区环境点云数据集(Airfield Area of Airport Point Cloud Data, 3A-PCD)。其次,在PointNet++的基础上设计一种面向大规模点云的语义分割网络(Semantic Segmentation Network of Airfield Area of Airport, 3A-Net),结合采样点空间编码(SPSE)模块和注意力池化(AP)模块以解决传统分割网络在分割精度以及对物体细节特征保留能力不足的问题。最后,基于3A-PCD数据集设计实验,消融实验结果表明增加SPSE后,模型的分割精度MIoU提升了6个百分点、增加AP模块后MIoU提升了3.9个百分点;3A-Net与基准模型PointNet++相比,MIoU提高了6.7个百分点;与现有先进的6种语义分割模型相比,所提模型性能均有不同程度的提升,更适用于室外大场景的目标识别。

关键词: 关键词:目标识别, 机场特种车辆, 语义分割, 注意力机制, 三维场景仿真

Abstract: Abstract: The autonomous and safe operation of airport special vehicles is essential to ensure the safety of the airfield area. At present, most airport special vehicle operations are mainly completed by driver’s operation and the visual command of controllers, in which such challenges as over-reliance on manpower and low autonomy. To improve its safety and autonomy, this paper presents a target recognition method for the airport environment based on the 3D point cloud segmentation. Firstly, a simulation-based approach is used to construct a point cloud dataset (Airfield Area of Airport Point Cloud Data,3A-PCD) of the airfield area environment. Secondly, based on PointNet++, a semantic segmentation network 3A-Net for large-scale point cloud data is designed, and a combined sampling point spatial encoding module and attentive pooling module are proposed to address the problem of traditional segmentation networks in terms of low segmentation accuracy and lack of ability to retain detailed features of objects. Finally, experiments were designed based on the 3A-PCD dataset, the ablation experiment result shows that the MIoU of the model increases by 6.0 percentage points with the addition of the spatial encoding module and by 3.9 percentage points with the addition of the AP module. 3A-Net achieves a 6.7 percentage points improvement in MIoU compared to the benchmark model PointNet++. In comparison with 6 existing advanced semantic segmentation models, the performance of the proposed model has been improved to varying degrees and is more suitable for target recognition in large outdoor scenes.
Key words:target recognition; airport special vehicle; semantic segmentation; attention mechanism; 3D scene simulation

Key words: Key words:target recognition, airport special vehicle, semantic segmentation, attention mechanism, 3D scene simulation

中图分类号: