[1] 刘紫扬. 一种路面坑洼、拥包预警系统的设计[J]. 科技创新与应用, 2017(12):73. [2] 张子茹,陈向东,丁星. 基于PQCR-PSL传感器的路面坑洼检测设计[J]. 电子设计工程, 2019,27(19):90-94. [3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.Imagenet classfication with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90. [4] 陈鹏,应骏. 基于卷积神经网络的多场景道路坑洼图像检测[J]. 上海师范大学学报(自然科学版), 2020,49(1):96-101. [5] 杨肖,刘淼. 基于树莓派平台的道路坑洼检测系统设计[J]. 农业装备与车辆工程, 2022,60(6):98-101. [6] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587. [7] GIRSHICK R.Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). 2015:1440-1448. [8] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149. [9] HE K M, GKIOXARI G, DOLLAR P, et al.Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017:2961-2969. [10] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:779-788. [11] REDMON J, FARHADI A.YOLO9000: Better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:6517-6525. [12] LIU W, ANGUELOV D, ERHAN D, et al.SSD: Single shot multiBox detector[C]// Computer Vision-ECCV 2016. 2016:21-37. [13] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018. [14] BOCHKOVSKIY A, WANG C, LIAO H M.YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020. [15] JOCHER G.YOLOv5[EB/OL]. [2020-08-09].https://github.com/ultralyc-s/yolov5. [16] 王玲敏,段军,辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022,58(9):303-312. [17] HOU Q, ZHOU D, FENG J.Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021:13708-13717. [18] STERGIOU A, POPPE R, KALLIATAKIS G.Refining activation downsampling with SoftPool[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021:10337-10346. [19] LIN T, DOLLAR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:936-944. [20] LIU S, QI L, QIN H, et al.Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:8759-8768. [21] TAN M, PANG R, LE Q V.EfficientDet: Scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:10778-10787. [22] NOH H, HONG S, HAN B.Learning deconvolution network for semantic segmentation[C]// Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2015:1520-1528. [23] WANG J, CHEN K, XU R, et al.CARAFE: Content-aware reAssembly of fEatures[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019:3007-3016. [24] TYCHSEN-SMITH L, PETERSSON L.Improving object localization with fitness NMS and bounded IoU loss[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:6877-6885. [25] REZATOFIGHI H, TSOI N, GWAK J, et al.Generalized intersection over union: A metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:658-666. [26] ZHENG Z, WANG P, LIU W, et al.Distance-IoU loss: Faster and better learning for bounding box regression[J]. arXiv preprint arXiv:1911.08287, 2019. [27] HE J, ERFANI S, MA X, et al.Alpha-IoU: A family of power intersection over union losses for bounding box regression[J]. Advances in Neural Information Processing Systems, 2021,34:20230-20242. |