[1] 邓益民,汤智谦,李红兵,等. 基于LOD的大规模输电线路场景实时渲染算法优化[J]. 计算机与现代化, 2017(1):115-118.
[2] 宋璇坤,韩柳,鞠黄培,等. 中国智能电网技术发展实践综述[J]. 电力建设, 2016,37(7):1-11.
[3] WANG J J, WANG J H, SHAO J W, et al. Image recognition of icing thickness on power transmission lines based on a least squares Hough transform[J]. Energies, 2017,10(4), doi: 10.3390/en10040415.
[4] BAKER L, MILLS S, LANGLOTZ T, et al. Power line detection using Hough transform and line tracing techniques[C]// Proceedings of the 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ). 2016, doi: 10.1109/IVCNZ.2016.7804438.
[5] 赵永生,徐海青,吴立刚,等. 基于霍夫直线变换的输电线路异物识别应用研究[J]. 数字技术与应用, 2017(3):127-129.
[6] 周封,任贵新. 基于颜色空间变量的输电线图像分类及特征提取[J]. 电力系统保护与控制, 2018,46(5):89-98.
[7] 黄东芳. 基于一种改进的Hough变换的输电线路图像中导线识别研究[D]. 南宁:广西大学, 2016.
[8] 黄习飞,刘柏宏,苏亮亮,等. 基于多窗口中值滤波和迭代高斯滤波的去除图像椒盐噪声的方法[J]. 科技视界, 2018(3):77-78.
[9] 邱志祺. 基于中值滤波与小波变换的图像去噪研究[D]. 唐山:华北理工大学, 2015.
[10]余永龙. 结合双边滤波与暗通道的图像去雾算法及应用研究[D]. 南昌:南昌航空大学, 2015.
[11]YE H M, YAN S L, HUANG P L. 2D Otsu image segmentation based on cellular genetic algorithm[C]// Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN). 2017:1313-1316.
[12]CHA Y J, YOU K S, CHOI W. Vision-based detection of loosened bolts using the Hough transform and support vector machines[J]. Automation in Construction, 2016,71:181-188.
[13]孔媛媛. 基于Hough变换定位与遗传算法的脑肿瘤分割方法研究[D]. 南昌:南昌航空大学, 2018.
[14]石殷巧,刘守印,马超. 基于深度学习的短视频中的物体检测与内容推荐系统研究[J]. 计算机与现代化, 2018(11):69-76.
[15]REN X D, DU S P, ZHENG Y. Parallel RCNN: A deep learning method for people detection using RGB-D images[C]// Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). 2017,doi:10.1109/CISP-BMEI.2017.8302069.
[16]LI Y, STEVENSON R L. Multimodal image registration with line segments by selective search[J]. IEEE Transactions on Cybernetics, 2017,47(5):1285-1298.
[17]PURKAIT P, ZHAO C, ZACH C. SPP-Net: Deep Absolute Pose Regression with Synthetic Views[DB/OL]. (2017-12-09). https://arxiv.org/pdf/1712.03452.pdf.
[18]QIAN R Q, LIU Q Y, YUE Y, et al. Road surface traffic sign detection with hybrid region proposal and fast R-CNN[C]// Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). 2016:555-559.
[19]EGGERT C, BREHM S, WINSCHEL A, et al. A closer look: Small object detection in faster R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME). 2017:421-426.
[20]KONG T, YAO A B, CHEN Y R, et al. HyperNet: Towards accurate region proposal generation and joint object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:845-853.
[21]张洪涛,路红英,刘腾飞,等. 基于深度学习的显著性检测方法模型——SCS[J]. 计算机与现代化, 2018(4):48-55.
[22]LIN T Y, DOLLR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:936-944.
[23]王德宇,徐友春,李永乐,等. 基于深度学习的车辆检测方法[J]. 计算机与现代化, 2017(8):56-60. |