计算机与现代化

• 数据挖掘 • 上一篇    下一篇

运动相关电位分类算法比较和语义范式分析

  

  1. (北京航空航天大学生物与医学工程学院,北京100191)
  • 收稿日期:2018-04-23 出版日期:2018-11-22 发布日期:2018-11-23
  • 作者简介:刘彬(1971-) ,男,湖南岳阳人,北京航空航天大学生物与医学工程学院硕士研究生,高级工程师,研究方向:脑机接口的数据挖掘,计算机与嵌入式系统、通信设备和IP/光网络架构与仿真; 通信作者:张冀聪(1981-),男,教授,博士生导师,博士,研究方向:认知神经科学,脑连通性网络,癫痫发作检测预测,电生理及穿戴式医疗仪器,生理与行为信息融合,模式识别和数据挖掘。

MRP Classification Algorithms Comparison and Semantic Paradigm Analysis

  1. (School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China)
  • Received:2018-04-23 Online:2018-11-22 Published:2018-11-23

摘要: 运动相关电位(MRPs)机理复杂、形式多变,使得对基于MRPs的脑电信号的特征提取和数据挖掘工作很具有挑战性。本文目的是要将多种机器学习和语义范式模型应用于对脑电信号的数据挖掘,以应对上述挑战。本文采用多种机器学习算法和信号处理方法进行分析和实验对比,并给出对应不同场景、目标的最佳模型。为了将跨度较大的模糊性的电生理信号、兼容多种信号的深度学习和明确的语义模型各领域无缝地衔接,实现了一个以脑电信号数据为研究对象的语义范式框架,赋予复杂信号以文法、语法和语义内涵,为深度神经网络构筑了语义解释。通过该范式框架能够找出脑电信号中特定语义的信息块以及这些信息块之间的语义组合,自动学习出高效的滤波器,达到准确率高、传输通量大、普适性强的效果。

关键词: 脑机接口, 脑电信号, 语义, 范式, 机器学习, 深度学习, 语法树, 决策树

Abstract: The mechanisms of movement related potentials (MRPs) are very complex and variable in forms, which makes it very challenging for feature extraction and data mining of brain electrophysiological signals based on MRPs. The purpose of this paper is to apply a variety of machine learning and semantic paradigm models to the data mining of brain electrophysiological signals to meet the above challenges. We used a variety of machine learning algorithms and signal processing methods for analysis and experimental comparison, and presented the best models corresponding to different scenarios and goals; in order to seamlessly connect the three large-span areas of fuzzy electrophysiological signals, deep learning techniques compatible with various heterogeneous signals and explicit semantics models, we had implemented a semantic paradigm framework that used brain electrophysiological signals data as research objects. We had endowed complex signals with grammatical, syntactic and semantic connotations, and constructed semantic interpretations for deep neural networks. Through this paradigm framework, we can identify the specific semantic information blocks in brain electrophysiological signals and semantic combinations between these information blocks, and automatically learn efficient filters to achieve the effect of high accuracy, high transmission rate and high adaptability.

Key words: brain computer interface (BCI); electroencephalography(EEG); syntax, paradigm; machine learning; deep learnings; syntax tree; decision tree

中图分类号: