计算机与现代化 ›› 2024, Vol. 0 ›› Issue (11): 64-69.doi: 10.3969/j.issn.1006-2475.2024.11.010

• 人工智能 • 上一篇    下一篇

融合句法特征与语义特征的作文自动评分方法

 
  

  1. (1.新疆师范大学计算机科学技术学院,新疆 乌鲁木齐 830054; 2.内蒙古民族大学计算机科学与技术学院,内蒙古 通辽 028000)
  • 出版日期:2024-11-29 发布日期:2024-12-09
  • 基金资助:
    国家自然科学基金资助项目(62066044, 62167008, 62006130); 新疆维吾尔自治区自然科学基金资助项目(2022D01A99, 2021D01B72); 内蒙古自治区自然科学基金资助项目(2022MS06028)

Integrating Syntactic and Semantic Features for Automated Essay Scoring

  1. (1. School of Computer Science and Technology, Xinjiang Normal University, Urumqi 830054, China; 
    2. School of Computer Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China)
  • Online:2024-11-29 Published:2024-12-09

摘要: 作文自动评分是一种利用自然语言处理技术对作文进行自动评估和打分的技术。作文自动评分能够提升评分效率,降低人工成本,确保评分的客观性和一致性,在教育领域有着广泛的应用前景。尽管句法特征和主题特征在作文自动评分中扮演着重要角色,但迄今为止,关于如何更好地利用这些特征进行作文自动评分的研究还相对不足。本文提出融合句法特征与语义特征的作文自动评分方法ISSF,该模型采用Parser提取作文的句法特征,采用BERT和适配器的训练方式提取作文的深层语义特征,为了更好地利用作文的主题特征和句法特征及深层语义特征的关联性,采用自注意力机制提取作文的主题特征并用于句法特征强化和深层语义特征强化。实验结果表明,本文提出的ISSF模型在公共数据集ASAP的8个子集上取得了较好的平均性能,相比于通义千问等基线模型,ISSF模型在评分范围较大、评分标准复杂的情况下更具有性能优势。

关键词: 作文自动评分; 主题特征; 句法特征; 深层语义特征 ,  ,

Abstract:  Automatic essay scoring is a technology that uses natural language processing technology to automatically evaluate and score essays. Automatic scoring of essays can improve scoring efficiency, reduce labor costs, ensure the objectivity and consistency of scoring, and has broad application prospects in the field of education. Although syntactic features and thematic features play an important role in automatic scoring of essays, so far, there is relatively insufficient research on how to better utilize these features for automatic scoring of essays. This paper proposes an automatic essay scoring method ISSF that integrates syntactic features and semantic features. The model uses Parser to extract the syntactic features of the essay, and uses BERT and adapter training methods to extract the deep semantic features of the essay. In order to better utilize the topic features and for the correlation between syntactic features and deep semantic features, the self-attention mechanism is used to extract thematic features of the essay and used to enhance syntactic features and deep semantic features. Experimental results show that the ISSF model proposed in this paper has achieved better average performance on 8 subsets of the public data set ASAP. Compared with baseline models such as Tongyi Qianwen, the ISSF model has a larger scoring range and complex scoring standards. In this case, it has more performance advantages.

Key words: automatic essay scoring, topic features, syntactic features, deep semantic features