计算机与现代化 ›› 2025, Vol. 0 ›› Issue (11): 106-111.doi: 10.3969/j.issn.1006-2475.2025.11.013

• 算法设计与分析 • 上一篇    下一篇

基于多源数据融合和优化深度置信网络的变压器故障诊断方法 

  


  1. (1.国网江西省电力有限公司超高压分公司,江西 南昌 330096; 2.华东交通大学电气与自动化工程学院,江西 南昌 330013;
    3.国网北京房山供电公司,北京 102488)

  • 出版日期:2025-11-20 发布日期:2025-11-24
  • 作者简介: 作者简介:徐波(1978—),男,江西南昌人,高级工程师,本科,研究方向:电力人工智能,电力机器人,智能运检技术,E-mail:1994830366@qq.com; 通信作者:魏艺君(1995—),女,江西南昌人,工程师,硕士,研究方向:智能电网技术,电力人工智能,电力机器人,E-mail: 1193068400@qq.com。
  • 基金资助:
       基金项目:国家自然科学基金资助项目(52277148, 52377103)
      

Transformer Fault Diagnosis Method Based on Multi-source Data Fusion and Optimized Deep Belief Network

  1. (1. State Grid Jiangxi Electric Power Co.Ltd, Nanchang 330096, China;
    2. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China;
    3. State Grid Beijing Fangshan Power Supply Company, Beijing 102488, China)
  • Online:2025-11-20 Published:2025-11-24

摘要: 摘要:针对现有变压器故障诊断普遍存在数据来源单一、诊断精度不高和收敛速度较慢等问题,本文提出一种基于多源数据融合技术和经过黑寡妇算法优化的深度置信网络的变压器故障诊断模型。首先对油色谱数据进行预处理;其次分别利用深度神经网络(DNN)和卷积神经网络(CNN)对油色谱数据和图像数据进行特征提取;然后对经DNN和CNN提取到的特征进行融合,得到融合后的特征;之后将融合后的特征输入到深度置信网络(DBN)中,其后利用黑寡妇优化法对DBN网络的参数进行优化,最后输出故障诊断的分类结果。最终实验结果表明:本文提出的方法故障诊断查准率、查全率和准确率均很高、收敛速度较快、对复杂诊断环境的适应能力好,平均查准率、查全率和准确率分别为93.67%、94.32%和94.73%,适用于变压器故障诊断。

关键词: 关键词:故障诊断; 深度置信网络; 多源数据融合; 黑寡妇优化算法; 变压器
 ,

Abstract: Abstract: To address the issues of single data sources, low diagnostic accuracy, and slow convergence speeds in existing transformer fault diagnosis methods, this paper proposes a transformer fault diagnosis model based on multi-source data fusion technology and a deep belief network optimized by the black widow algorithm. Firstly, the oil chromatography data are preprocessed; secondly, the deep neural network (DNN) and convolutional neural network (CNN) are used to extract features from the oil chromatography data and the image data, respectively; then the features extracted by DNN and CNN are fused, and the fused features are obtained; next, the fused features are input into the deep belief network (DBN), and the parameters of the DBN network are optimized using the black widow optimization method, and then the classification results of fault diagnosis are finally output. The final experimental results demonstrate that the proposed method achieves high precision, recall, and accuracy in fault diagnosis, exhibits rapid convergence, and demonstrates strong adaptability to complex diagnostic environments. The average precision, recall, and accuracy rates are 93.67%, 94.32%, and 94.73% respectively, indicating its suitability for transformer fault diagnosis applications.

Key words: Key words: fault diagnosis, deep belief networks, multi-source data fusion, black widow optimization algorithm, transformer

中图分类号: