计算机与现代化 ›› 2025, Vol. 0 ›› Issue (11): 97-105.doi: 10.3969/j.issn.1006-2475.2025.11.012

• 算法设计与分析 • 上一篇    下一篇

基于视觉Transformer的充电桩故障诊断方法

  


  1. (1.国网江苏省电力有限公司,江苏 南京 210000; 2.国网江苏省电力有限公司营销服务中心,江苏 南京 210000;
    3.南京邮电大学自动化学院/人工智能学院,江苏 南京 210023)
  • 出版日期:2025-11-20 发布日期:2025-11-24
  • 作者简介: 作者简介:仇新宇(1967—),男,江苏盐城人,高级工程师,硕士,研究方向:电力营销工作,E-mail: Qiuxinyu@sina.com; 通信作者: 孟子悦(2000—),男,江苏仪征人,硕士研究生,研究方向:电力负荷,E-mail: 1222056605@njupt.edu.cn。
  • 基金资助:
     基金项目:国家电网有限公司科技项目(5700-202318272A-1-1-ZN)
      

Fault Diagnosis Method for Charging Pile Based on Vision Transformer


  1. (1. State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210000, China; 2. Marketing Service Center State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210000, China; 3. College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
  • Online:2025-11-20 Published:2025-11-24

摘要: 摘要:随着电动汽车渗透率不断升高,充电设施普及程度日益提升,电动汽车充电设施运维的难度也在不断增大。直流充电桩的故障诊断是电动汽车充电设施运维的关键,及时发现充电桩早期故障,对排除充电桩故障风险、保障充电桩的稳定运行具有重要意义。已有故障诊断方法不仅需要高成本的专用设备辅助,而且对数据采样和特征抽取具有较高要求;已有的基于深度学习模型的故障诊断方法虽然具有较高的性能,但是其训练过程对标注数据质量要求高,不容易获得足够数量的标注数据用于训练。为此,本文仅利用电动汽车直流充电桩自身采集到的电压、电流信号,提出一种基于视觉Transformer(Vision Transformer, ViT)的故障诊断方法。该方法将充电桩的电压和电流低频采样信号转换为时序图像,利用ViT模型进行特征学习。在该过程中,采用预训练技术将跨领域的特征表示知识迁移到故障诊断模型中,使ViT模型可以在相对较小的有标签数据集上进行微调,从而在有限的数据上取得更好的性能,缓解了模型对标注数据的需求。实验结果表明,该故障诊断模型平均正确率为92.2%,符合实际要求。本文提出的方法支持在线诊断并且不依赖专用设备,具有较好的推广前景。

关键词: 关键词:充电桩故障诊断, 图像分类, 视觉Transformer, 预训练技术

Abstract: Abstract: With the increasing penetration rate of electric vehicles and the increasing popularity of charging facilities, the difficulty of operation and maintaining electric vehicle charging facilities is also increasing. The fault diagnosis of Direct Current (DC) charging piles is a crucial part of the operation and maintenance of electric vehicle charging facilities. Detecting early faults of charging piles in time is of great significance in eliminating the risk of charging pile failures and ensuring the stable operation of charging piles. The existing fault diagnosis methods not only require the assistance of high-cost specialized equipment but also have high requirements for data sampling and feature extraction; Although the fault diagnosis method based on neural networks and its variants has high performance, its training process requires high-quality labelled data, and it is not easy to obtain enough labelled data for training. Therefore, a fault diagnosis method based on Vision Transformer (ViT) is proposed in this paper only by using the voltage and current signals collected by the DC charging pile itself. In this method, the low-frequency sampling signals of voltage and current of the charging pile are converted into time series images, and the ViT model is used for feature learning. In this process, the pre-training technology is used to transfer the cross-domain feature representation knowledge into the fault diagnosis model, so that the ViT model can be fine-tuned on a relatively small labelled data set, thus achieving better performance on limited data and alleviating the need for labelled data. The experimental results show that the average accuracy of the fault diagnosis model is 92.2%, which meets the practical requirements. The method proposed in this paper supports online diagnosis and does not depend on special equipment, so it has a good popularization prospects.

Key words: Key words: fault diagnosis for charging piles, image classification, Vision Transformer, pre-training techniques

中图分类号: