计算机与现代化 ›› 2025, Vol. 0 ›› Issue (03): 106-112.doi: 10.3969/j.issn.1006-2475.2025.03.016

• 图像处理 • 上一篇    下一篇

面向小目标检测的自适应多维度特征融合网络


  

  1. (四川大学机械工程学院,四川 成都 610065)
  • 出版日期:2025-03-28 发布日期:2025-03-28

AMDFF-Net: Adaptive Multi-dimensional Feature Fusion Network for Tiny Object Detection

  1. (School of Mechanical Engineering, Sichuan University, Chengdu 610065, China) 
  • Online:2025-03-28 Published:2025-03-28

摘要: 小目标在图像中占有很少的像素,导致目标严重缺乏特征信息,小目标检测是目标检测的一大挑战。为解决这一问题,设计一种面向小目标检测的自适应多维度特征融合网络(AMDFF-Net)算法以提高小目标检测的准确率。首先,整合池化层和注意力机制,构建池化注意力模块,使模型获得更大的接受域以实现自我注意中的自适应和长程相关性;其次,设计自适应选择多维度特征融合模块(ASMFF),并基于ASMFF模块设计自适应多维度特征金字塔网络,自适应融合不同尺度的图像特征,强化小目标的信息。为了验证模型的性能和泛用性,分别在VisDrone2019数据集、AI-TOD数据集以及TinyPerson数据集上进行实验,实验结果表明,AMDFF-Net提高了小目标检测的精度,通过与其他主流算法对比,验证了本文模型在小目标检测方面的有效性。

关键词: 小目标检测, 特征金字塔网络, 注意力机制, 特征融合

Abstract:  Tiny object detection is a huge challenge in object detection research because tiny objects take up fewer pixels in the image, which results in a lack of feature information. To address this issue, an adaptive multi-dimensional feature fusion network (AMDFF-Net) for tiny target detection is designed to improve the accuracy of tiny object detection. Firstly, by integrating pooling layers and attention mechanisms, this paper constructs a pooling attention module, enabling the model to achieve a larger receptive field to enable self-adaptive and long-range correlations in self-attention. Secondly, an adaptive selection multi-dimensional feature fusion(ASMFF) module is designed, and an adaptive multi-dimensional feature pyramid network is designed based on the ASMFF module. This network adaptively fuses image features at different scales to enhance the information about tiny objects. To verify the performance and generalization of the model, experiments are conducted on the VisDrone2019, AI-TOD, and TinyPerson datasets. The experimental results show that AMDFF-Net improves the accuracy of tiny target detection, and the effectiveness of the proposed model in tiny target detection is verified by comparing with other mainstream algorithms.

Key words:  , tiny object detection, feature pyramid network, attention mechanisms, feature fusion

中图分类号: