计算机与现代化 ›› 2025, Vol. 0 ›› Issue (03): 99-105.doi: 10.3969/j.issn.1006-2475.2025.03.015

• 图像处理 • 上一篇    下一篇

基于深度学习的舌象体质分类方法


  

  1. (长沙理工大学物理与电子科学学院,湖南 长沙 410114)
  • 出版日期:2025-03-28 发布日期:2025-03-28
  • 基金资助:
    湖南省自然科学基金资金项目(2021JJ30739); 湖南省教育厅科学研究项目(20K007)

Tongue Constitution Classification Method Based on Deep Learning

  1. (School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China)
  • Online:2025-03-28 Published:2025-03-28

摘要: 针对舌象类别间差异小、传统网络特征提取不充分的问题,本文通过构建舌象语义分割数据集和分类数据集,并进行数据预处理,基于RepVGG网络进行算法设计与优化,提出一种基于卷积神经网络的多特征融合舌象体质分类网络MTSNet。MTSNet使用多个尺度的特征金字塔,将网络学习到的高层次语义信息和低层次语义信息连接融合,提升网络的表征能力。在RepBlock模块增加挤压激励卷积层,使网络更加关注信息丰富的特征。实验结果表明,MTSNet有效提升了对9种舌象体质的分类效果,其准确率相比传统特征提取网络AlexNet提高了32.11个百分点,比SVM网络提高了22.37个百分点,比Resnet-18网络提高了17.68个百分点。与优化前的RepVGG网络相比,准确率提高了9.90个百分点、宏平均值提高了14.01个百分点、微平均值提高了9.90个百分点、加权平均值提高了11.09个百分点。该舌象体质分类方法可为用户健康管理提供科学依据,对中医辅助治疗、科研具有良好的借鉴作用。

关键词: 卷积神经网络, 舌象分割, 特征融合, 舌象分类, 中医体质

Abstract: In response to the minimal inter-class differences in tongue images and the insufficient feature extraction by traditional networks, this paper constructs datasets for tongue image semantic segmentation and classification and conducts data preprocessing. Based on RepVGG network algorithm design and optimization, a multi-feature fusion tongue constitution classification network MTSNet based on convolutional neural network is proposed. MTSNet employs a multi-scale feature pyramid and combine high-level and low-level semantic information learned by the network to enhance the network’s representational capabilities. The addition of squeeze-excitation convolutional layers in the RepBlock module enables the network to focus more on information-rich features. The experimental results show that MTSNet significantly enhances classification performance across nine types of tongue constitutions, and its accuracy is 32.11 percentage points higher than that of AlexNet, 22.37 percentage points higher than that of SVM, and 17.68 percentage points higher than that of Resnet-18. Compared with the unoptimized RepVGG network, MTSNet achieves improvements of 9.90 percentage points in accuracy, 14.01 percentage points in macro-averaging, 9.90 percentage points in micro-averaging, and 11.09 percentage points in weighted-averaging. This tongue constitution, classification method provides scientific basis for users’ health management and has good reference application for traditional Chinese medicine’s adjunctive treatment and scientific research.

Key words:  , convolutional neural networks, tongue segmentation, feature fusion, tongue classification, traditional Chinese medicine constitution

中图分类号: