计算机与现代化 ›› 2024, Vol. 0 ›› Issue (08): 54-58.doi: 10.3969/j.issn.1006-2475.2024.08.010

• 人工智能 • 上一篇    下一篇

基于改进YOLOv5s和DeepSORT的行人跟踪算法


  

  1. (1.浙江工业大学信息工程学院,浙江 杭州 310023; 2.浙江万向精工有限公司,浙江 杭州 311202;
    3.浙江万向钱潮股份公司,浙江 杭州 311215)
  • 出版日期:2024-08-28 发布日期:2024-08-28
  • 基金资助:
    杭州市萧山区重大科技计划项目(2021108)

Pedestrian Tracking Algorithm Based on Improved YOLOv5s and DeepSORT

  1. (1. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China;
    2. Zhejiang Wanxiang Precision Co., Ltd., Hangzhou 311202, China;3. Wanxiang Qianchao Co., Ltd., Hangzhou 311215, China)
  • Online:2024-08-28 Published:2024-08-28

摘要: 为提高DeepSORT目标检测器YOLOv5s算法的检测精度,本文将注意力机制CBAM融入到YOLOv5s网络结构中,改进双向特征融合网络BiFPN,使用EIoU作为边界框损失函数。基于VOC 2007行人数据集的测试结果表明本文算法的精确率、召回率和平均精度相比于原算法分别提高0.3、1.0和0.3个百分点;在MOT17数据集上的测试结果表明本文算法的MOTA、IDF1、MT、IDR分别提升1.8个百分点、2.9个百分点和1、2.7,FN与ML分别降低了4373和11。测试结果验证了改进YOLOv5s作为检测器能够有效提升算法的跟踪精度。

关键词: 目标跟踪, YOLOv5s, DeepSORT, 注意力机制, 特征融合网络

Abstract: The study conducts focus on enhancing the detection accuracy of the YOLOv5s algorithm within the DeepSORT framework. The research work encompasses the integration of the attention mechanism called Convolutional Block Attention Module (CBAM) into the network structure of YOLOv5s, the refinement of the bidirectional feature fusion network Bi-directional Feature Pyramid Network (BiFPN), and the adoption of Enhanced Intersection over Union (EIoU) as the bounding box loss function. Test results obtained from the VOC 2007 pedestrian dataset indicates improvements when compared to the original algorithm. Specifically, the proposed algorithm exhibits an increase of 0.3 percentage points in precision, 1.0 percentage points in recall, and 0.3 percentage points in average precision. Subsequently, the algorithm is evaluated on the MOT17 dataset, showcasing significant enhancements in multiple metrics. The MOTA metric experiences a 1.8 percentage points improvement, while IDF1, MT, and IDR see enhancements of 2.9 percentage points, 1, and 2.7, respectively. Moreover, the number of false negatives (FN) decreases by 4373, and the number of mostly lost targets (ML) decreases by 11. Overall, these empirical findings substantiate the efficacy of the improved YOLOv5s algorithm as a detector, effectively augmenting tracking precision in various scenarios.

Key words:  , target tracking, YOLOv5s, DeepSORT, attention mechanism, feature fusion network

中图分类号: