计算机与现代化 ›› 2024, Vol. 0 ›› Issue (09): 114-120.doi: 10.3969/j.issn.1006-2475.2024.09.019

• 图像处理 • 上一篇    下一篇

基于人体骨架的电梯内异常行为识别预警



  

  1. (西安工程大学计算机科学学院,陕西 西安710000)
  • 出版日期:2024-09-27 发布日期:2024-09-29
  • 基金资助:
    陕西省重点研发计划项目(2022SF-604)

Recognition and Warning of Elevator Abnormal Behavior Based on Human Skeleton

  1. (School of Computer Science, Xi’an Polytechnic University, Xi’an 710000, China)
  • Online:2024-09-27 Published:2024-09-29

摘要: 为准确识别乘客在封闭狭小的电梯轿厢内发生的打架等异常行为,避免安全事故的发生,提出一种基于人体骨架联合时空特征的乘客异常行为识别方法。首先,使用YOLOv7对视频中乘客位置进行检测,通过YOLOv7-Pose姿态估计算法提取骨骼关键点坐标,滤除复杂背景干扰;其次,针对异常行为动作幅度大、速度较快、方向混乱的特征,使用SURF联合金字塔分层改进的LK光流法对乘客人体骨架特征信息进行时间、空间的联合特征提取;最后,通过特征点的光流变化来判断轿厢内是否发生异常行为并及时发出警报。本文使用的数据集分别来源于电梯场景下的自建数据集和非电梯场景下行为公开数据集,实验结果表明,本文所提方法对异常行为识别准确率达到了95.53%,在速度与准确度上相较于其他方法有一定的提高,能够满足实时要求,可应用于电梯轿厢的视频监控系统,保障乘客的乘梯安全。

关键词: 电梯轿厢, 异常行为识别, YOLOv7, 姿态估计, 特征提取, 金字塔分层LK光流法

Abstract:  In order to accurately identify passengers’ abnormal behaviors such as fighting in the closed and narrow elevator car, and avoid the occurrence of safety accidents, a passenger abnormal behavior identification method based on the joint spatio-temporal features of human skeleton is proposed. Firstly, this method uses YOLOv7 to detect the passenger’s position in the video, extracts the coordinates of the key points of the skeleton through the YOLOv7-Pose pose estimation algorithm, and filter out the complex background interference. Secondly, for the features of large amplitude, fast speed, and chaotic direction of the abnormal behaviors, we use the SURF joint pyramid hierarchical improvement of the LK optical flow method to carry out joint temporal and spatial feature extraction of the passenger’s human skeleton information. Finally, the optical flow changes of the feature points can be used to judge whether abnormal behavior occurs in the car and alarm it in time. The dataset in this paper is derived from the self-constructed dataset in elevator scenario and the behavioral public dataset in non-elevator scenario respectively. After experimental validation, the accuracy of this method on the recognition of abnormal behaviors reaches 95.53%, which is improved in speed and accuracy compared with other methods. It can meet the real-time requirements and be applied to the video monitoring system of elevator car to ensure the safety of the passengers in the elevator.

Key words: elevator car, abnormal behavior recognition, YOLOv7, pose estimation, feature extraction, pyramid layered LK optical flow method

中图分类号: