[1] PARKES K R. Age and work environment characteristics in relation to sleep: Additive, interactive and curvilinear effects[J]. Applied Ergonomics, 2016,54(6):41-50.
[2] IBER C, ANCOLI-ISRAEL S, CHESSON A L, et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications[M]. Westchester: American Academy of Sleep Medicine, 2007.
[3] 李杰. 非脑电睡眠监测系统和算法研究[D]. 杭州:浙江大学, 2016.
[4] ROEBUCK A, MONASTERIO V, GEDERI E, et al. A review of signals used in sleep analysis[J]. Physiological Measurement, 2013,35(1). DOI:10.1088/0967-3334/35/1/R1.
[5] EBRAHIMI F, SETAREHDAN S, NAZERAN H. Automatic sleep staging by simultaneous analysis of ECG and respiratory signals in long epochs[J]. Biomedical Signal Processing and Control, 2015,18:69-79.
[6] FONSECA P, LONG X, RADHA M, et al. Sleep stage classification with ECG and respiratory effort[J]. Physiological Measurement, 2015,36(10). DOI:10.1088/0967-3334/36/10/2027.
[7] UTOMO O K, SURANTHA N, ISA S M, et al. Automaticsleep stage classification using weighted ELM and PSO on imbalanced data from single lead ECG[J]. Procedia Computer Science, 2019,157(C):321-328.
[8] REDMOND S J, CHAZAL P D, O′BRIEN C, et al. Sleep staging using cardiorespiratory signals[J]. Somnologie-Schlafforschung und Schlafmedizin, 2007,11(4):245-256.
[9] YCELBA U, YCELBA C, TEZEL G, et al. Automatic sleep staging based on SVD, VMD, HHT and morphological features of single-lead ECG signal[J]. Expert Systems with Applications: An International Journal, 2018,102(C):193-206.
[10]王爱波. 基于隐马尔可夫模型的心率变异性分析在睡眠分期中的应用[D]. 成都:电子科技大学, 2019.
[11]冯静达,焦学军,李启杰,等. 基于心率和呼吸特征结合的睡眠分期研究[J]. 航天医学与医学工程, 2020,33(2):152-158.
[12]JUNG D W, HWANG S H, LEE Y J, et al. Apnea-hypopnea index prediction using electrocardiogram acquired during the sleep-onset period[J]. IEEE Transactions on Biomedical Engineering, 2017,64(2):295-301.〖HJ0.24mm〗
[13]NGUYEN Q N T, BUI P N, LE T Q. In vivo comparison of sleep stage scoring between commercialized wearable devices and polysomnography system[C]// 6th International Conference on the Development of Biomedical Engineering in Vietnam: BME6. 2018:793-800.
[14]LI Q, LI Q, LIU C, et al. Deep learning in the cross-time-frequency domain for sleep staging from a single lead electrocardiogram[J]. Physiological Measurement, 2018,39(12). DOI:10.1088/1361-6579/aaf339.
[15]FRANTZIDIS C A, NDAY C M, CHRISKOS P, et al. A review on current trends in automatic sleep staging through bio-signal recordings and future challenges[J]. Sleep Medicine Reviews, 2020,55(5). DOI:10.1016/j.smrv.2020.101377.
[16]ZHU T Q, LUO W, YU F. Convolution- and attention-based neural network for automated sleep stage classification[J]. International Journal of Environmental Research and Public Health, 2020,17(11). DOI:10.3390/ijerph17114152.
[17]张兴华. 基于心电信号和深度神经网络的睡眠分期研究[D]. 天津:天津工业大学, 2018.
[18]WEI R, ZHANG X, WANG J, et al. The research of sleep staging based on single-lead electrocardiogram and deep neural network[J]. Biomedical Engineering Letters, 2017,8(1). DOI:10.1007/s13534-017-0044-1.
[19]RADHA M, FONSECA P, ROSS M, et al. LSTM knowledge transfer for HRV-based sleep staging[J]. arXiv preprint arXiv:1809.06221, 2018.
[20]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010.
[21]ZHANG G, CUI L, MUELLER R, et al. Thenational sleep research resource: Towards a sleep data commons[J]. Journal of the American Medical Informatics Association, 2018,25(12). DOI:10.1093/jamia/ocy064.
[22]QUAN S F, HOWARD B V, IBER C, et al. The sleep heart health study: Design, rationale, and methods[J]. Sleep, 1997,20(12):1077-1085.
[23]CHEN X, WANG R, ZEE P, et al. Racial/Ethnic differences in sleep disturbances: The multi-ethnic study of atherosclerosis (MESA)[J]. Sleep, 2014,38(6). DOI:10.5665/sleep.4732.〖HJ0.2mm〗
[24]GOLDBERGER A L, AMARAL L A N, GLASS L, et al.PhysioBank, physioToolkit, and physioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000,101(23):215-220. DOI:10.1161/01.CIR.101.23.e215.
[25]周志华. 机器学习[M]. 北京:清华大学出版社, 2016:31-35.
[26]HAMILTON P S, TOMPKINS W J. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database[J]. IEEE Transactions on Biomedical Engineering, 1986,33(12):1157-1165.
[27]XIAO M, YAN H, SONG J, et al. Sleep stages classification based on heart rate variability and random forest[J]. Biomedical Signal Processing and Control, 2013,8(6):624-633.
[28]郑捷文,张悦舟,兰珂,等. 基于心率变异性分析的睡眠分期算法研究和验证[J]. 中国生物医学工程学报, 2020,39(4):432-439.
[29]YILMAZ B, ASYALI M H, ARIKAN E, et al. Sleep stage and obstructive apneaic epoch classification using single-lead ECG[J]. BioMedical Engineering OnLine, 2010,9(1). DOI:10.1186/1475-925X-9-39.
[30]WILLEMEN T, DEUN D V, VERHAERT V, et al. Automatic sleep stage classification based on easy to register signals as a validation tool for ergonomic steering in smart bedding systems[J]. Work, 2012,41(S1):1985-1989.
|