[1] 徐铭辰,牛媛媛,余永昌. 果蔬采摘机器人研究综述[J]. 安徽农业科学, 2014,42(31):11024-11027.
[2] 程祥云,宋欣. 果蔬采摘机器人视觉系统研究综述[J]. 浙江农业科学, 2019,60(3):490-493.
[3] 高文硕,宋卫东,王教领,等. 果蔬菌采摘机械研究综述[J]. 中国农机化学报, 2020,41(10):9-15.
[4] 蒋焕煜,彭永石,申川,等. 基于双目立体视觉技术的成熟番茄识别与定位[J]. 农业工程学报, 2008,24(8):279-283.
[5] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
[6] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). 2005:886-893.
[7] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2):121-167.
[8] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55(1):119-139.
[9] JI W, ZHAO D, CHENG F Y, et al. Automatic recognition vision system guided for apple harvesting robot[J]. Computers and Electrical Engineering, 2012,38(5):1186-1195.
[10]SI Y S, LIU G, FENG J. Location of apples in trees using stereoscopic vision[J]. Computers and Electronics in Agriculture, 2015,112:68-74.
[11]陶华伟,赵力,奚吉,等. 基于颜色及纹理特征的果蔬种类识别方法[J]. 农业工程学报, 2014,30(16):305-311.
[12]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// 2012 Advances in Neural Information Processing Systems. 2012:1097-1105.
[13]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[14]UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object regonition[J]. International Journal of Computer Vision, 2013,104(2):154-171.
[15]穆龙涛,高宗斌,崔永杰,等. 基于改进AlexNet的广域复杂环境下遮挡猕猴桃目标识别[J]. 农业机械学报, 2019,50(10):24-34.
[16]GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[17]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[18]周云成,许童羽,邓寒冰,等. 基于双卷积链Fast R-CNN的番茄关键器官识别方法[J]. 沈阳农业大学学报, 2018,49(1):65-74.
[19]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015:91-99.
[20]朱旭,马淏,姬江涛,等. 基于Faster R-CNN的蓝莓冠层果实检测识别分析[J]. 南方农业学报, 2020,51(6):1493-1501.
[21]HE K M, GKIOXARI G, DOLLR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV). 2017:2980-2988.
[22]LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:8759-8768.
[23]CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:7291-7299.
[24]LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015:3431-3440.
[25]宁政通,罗陆锋,廖嘉欣,等. 基于深度学习的葡萄果梗识别与最优采摘定位[J]. 农业机械学报, 2021,37(9):222-229.
[26]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:779-788.
[27]REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:6517-6525.
[28]刘芳,刘玉坤,林森,等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020,51(6):229-237
[29]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on International Conference on Machine Learning. 2015:448-456.
[30]REDMON J, FARHADI A. YOLOv3: An increment improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[31]薛月菊,黄宁,涂淑琴,等. 未成熟芒果的改进YOLOv2识别方法[J]. 农业工程学报, 2018,34(7):173-179.
[32]HOSMER D W, LEMESHOW S. Applied Logistic Regression[M]. John Wiley & Sons, 2013.
[33]SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resNet and the impact of residal connections on learning[J]. arXiv preprint arXiv:1602.07261, 2016.
[34]LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:936-944.
[35]JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010,31(8):651-666.
[36]BOCHKOVSKIY A, WANG C Y, MARK LIAO H Y. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.
[37]武星,齐泽宇,王龙军,等. 基于轻量化YOLOv3卷积神经网络的苹果检测方法[J]. 农业机械学报, 2020,51(8):17-25.
[38]HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.
[39]LI C, DENG C, LI N, et al. Self-supervised adversarial hashing networks for cross-modal retrieval[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:4242-4251.
[40]张晴晖,孔德肖,李俊萩,等. 基于逆运动学降维求解与YOLOv4的果实采摘系统设计[J/OL]. 农业机械学报:1-15[2021-07-30]. http://kns.cnki.net/kcms/detail/11.1964.S.20210526.1723.018.html.
[41]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shotmultibox detector[C]// 2016 European Conference on Computer Vision. 2016:21-37.
[42]李善军,胡定一,高淑敏,等. 基于改进SSD的柑橘实时分类检测[J]. 农业工程学报, 2019,35(24):307-313.
[43]彭红星,黄博,邵园园,等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018,34(16):155-162.
[44]岳有军,田博凯,王红君,等. 基于改进Mask RCNN的复杂环境下苹果检测研究[J]. 中国农机化学报, 2019,40(10):128-134.
[45]赵德安,吴任迪,刘晓洋,等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019,35(3):164-173.
[46]朱旭,马淏,姬江涛,等. 基于Faster R-CNN的蓝莓冠层果实检测识别分析[J]. 南方农业学报, 2020,51(6):1493-1501.
[47]刘芳,刘玉坤,林森,等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020,51(6):229-237.
[48]曾镜源,洪添胜,杨洲. 基于实例分割的柚子姿态识别与定位研究[J]. 河南农业大学学报, 2021,55(2):287-294.
[49]ZHENG Y Y, KONG J L, JIN X B, et al. CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture[J]. Sensors, 2019,19(5). DOI: 10.3390/s19051058.
[50]HNI N, ROY P, ISLER V. MinneApple: A benchmark dataset for apple detection and segmentation[J]. arXiv preprint arXiv:1909.06441, 2019.
[51]GEN-MOLA J, VILAPLANA V, ROSELL-POLO J R, et al. Multi-modal deep learning for fruit detection using RGB-D cameras and their radiometric capabilities[J]. Computers and Electronics in Agriculture, 2019,162:689-698.
[52]FERLEZ J. Methods for analysis of research related data in the IST-world application[D]. University of Ljubljana, 2007.
[53]HOREA M, MIHAI O. Fruit recognition from images using deep learning[J]. Acta Universitatis Sapientiae Informatica, 2018,10(1):26-42.
[54]WALTNER G, SCHWARZ M, LADSTTTER S, et al. Personalized dietary self-management using mobile vision-based assistance[M]// New Trends in Image Analysis and Processing-ICIAP 2017. 2017:385-393.
[55]EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010,88(2):303-338.
[56]EVERINGHAM M, ALI ESLAMI S M, VAN GOOL L, et al. The PASCAL visual object classes challenge:A retrospective[J]. International Journal of Computer Vision, 2015,111(1):98-136.
[57]RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.
[58]HOIEM D, CHODPATHUMWAN Y, DAI Q Y. Diagnosing error in object detectors[C]// Proceedings of the 12th European Conference on Computer Vision. 2012:340-353.
[59]陈兆凡,赵春阳,李博. 一种改进IoU损失的边框回归损失函数[J]. 计算机应用研究, 2020,37(S2):293-296.
|