[1] LI S, WANG X, WANG J. Manifold learning-based automatic signal identification in cognitive radio networks[J]. Communications Letter, 2012,6(8):955-963.
[2] 刘丹. 认知无线电中的信号制式识别研究[D]. 成都:电子科技大学, 2011.〖HJ0.6mm〗
[3] 罗朝义,张强,周一鹏,等. 机载电子对抗情报分析中雷达信号快速识别方法[J]. 中国电子科学研究院学报, 2016,11(5):469-473.
[4] 张昊. 基于深度学习的通信信号识别关键技术研究[D]. 成都:电子科技大学, 2020.
[5] YE F, CHEN J, LI Y B, et al. MFSK signal individual identification algorithm based on bi-spectrum and wavelet analyses[J]. KSII Transactions on Internet and Information Systems, 2016,10(10):4808-4824.
[6] ZHANG G X, XU L. A new recognition system for radar emitter signals[J]. Kybernetes, 2012,41(9):1351-1360.
[7] XIE W W, HU S, YU C, et al. Deep learning in digital modulation recognition using high order cumulates[J]. IEEE Access, 2019,7:63760-63766.
[8] WANG Y, LIU Q Y. Multi-scale permutation entropy as a tool for complexity analysis of ship-radiated noise[C]// 2016 IEEE/OES China Ocean Acoustic (COA). 2016. DOI: 10.1109/COA.2016.7535833.
[9] RUCKA M, WILDE K. Application of continuous wavelet transform in vibration based damage detection method for beams and plates[J]. Journal of Sound and Vibration, 2006,297(3-5):536-550.
[10]LAW L S, KIM J H, LIEW W Y H, et al. An approach based on wavelet packet decomposition and Hilbert-Huang transform (WPD-HHT) for spindle bearings condition monitoring[J]. Mechanical Systems and Signal Processing, 2012,33:197-211.
[11]孙延鹏,赵越,屈乐乐. 基于同步压缩短时傅里叶变换的微型无人机识别[J]. 电讯技术, 2021,61(1):69-75.
[12]KHAN F, MEMON S, JOKHIO S H. Support vector machine based energy aware routing in wireless sensor networks[C]// 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI). 2016. DOI: 10.1109/ICRAI.2016.7791218.
[13]车敏诗,聂春燕,范如俊,等. 一种基于混沌特征及优化CHAID决策树的情绪识别方法[J]. 计算机应用研究, 2020,37(S2):105-107.
[14]JOBIN G, LEENA M, RIYAS K S. Vehicle detection and classification from acoustic signal using ANN and KNN[C]// 2013 IEEE International Conference on Control Communication and Computing (ICCC). 2013:436-439.
[15]BERNAS M, PLACZEK B. Fully connected neural networks ensemble with signal strength clustering for indoor localization in wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2015,11(12):101-160.
[16]O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]// 2016 International Conference on Engineering Applications of Neural Networks. 2016:213-226.
[17]MENG F, CHEN P, WU L, et al. Automatic modulation classification: A deep learning enabled approach[J]. IEEE Transactions on Vehicular Technology, 2018,67(11):10760-10772.
[18]LI R D, LI L Z, YANG S Y, et al. Robust automated VHF modulation recognition based on deep convolutional neural networks[J]. IEEE Communications Letters, 2018,22(5):946-949.
[19]ZHANG M, ZENG Y, HAN Z D, et al. Automatic modulation recognition using deep learning architectures[C]// 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). 2018. DOI: 10.1109/SPAWC.2018.8446021.
[20]PENG S L, JIANG H Y, WANG H X, et al. Modulation classification using convolutional neural network based deep learning model[C]// 2017 26th Wireless and Optical Communication Conference (WOCC). 2017. DOI: 10.1109/WOCC.2017.7929000.
[21]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[22]HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]// 2016 European Conference on Computer Vision. 2016:630-645.
[23]SHAO L, ZHU F, LI X L, et al. Transfer learning for visual categorization: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015,26(5):1019-1034.
|