[1] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014,2:2672-2680.
[2] REED S, AKATA Z, YAN X C, et al. Generative adversarial text to image synthesis[C]// Proceedings of the 33rd International Conference on Machine Learning. 2016:1060-1069.
[3] JING Y C, YANG Y Z, FENG Z L, et al. Neural style transfer: A review[J]. IEEE Transactions on Visualization and Computer Graphics, 2020,26(11):3365-3385.
[4] 张国洲. 基于CycleGAN的字体风格转移算法及其应用[D]. 成都:西华大学, 2019.
[5] 管绍春,向宇. 基于生成对抗网络的服装图像风格迁移[J]. 电脑知识与技术, 2019,15(26):191-193.
[6] GATYS L A, ECKER A S, BETHGE M. Texture synthesis using convolutional neural networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015:262-270.
[7] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:5967-5976.
[8] VONDRICK C, PIRSIAVASH H, TORRALBA A. Generating videos with scene dynamics[J]. arXiv preprint arXiv:1609.02612, 2016.
[9] 汪封文. 基于生成对抗网络的遥感图像去云研究[D]. 武汉:湖北工业大学, 2021.
[10]吴敏. 基于生成对抗网络的遥感图像彩色化研究[D]. 昆明:云南大学, 2020.
[11]杜彦璞. 基于生成对抗网络的遥感图像超分辨率方法研究[D]. 成都:成都理工大学, 2018.
[12]RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.
[13]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32rd International Conference on Machine Learning. 2015:448-456.
[14]MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.
[15]MAO X D, LI Q, XIE H R, et al. Least squares generative adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. 2017:2813-2821.
[16]ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]// Proceedings of the 34th International Conference on Machine Learning. 2017:214-223.
[17]GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:5769-5779.
[18]LIU Z W, LUO P, WANG X G, et al. Deep learning face attributes in the wild[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:3730-3738.
[19]GUO W Y. FAMOUSFACE dataset[EB/OL]. (2019-05-29)[2021-04-20]. http://seeprettyface.com/mydataset_page3.html#star.
[20]BARRATT S, SHARMA R. A note on the inception score[J]. arXiv preprint arXiv:1801.01973, 2018.
[21]HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6629-6640.
[22]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012:1097-1105.
[23]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[24]JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]// Proceedings of the 2016 European Conference on Computer Vision. 2016:694-711.
[25]LIU G L, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:89-105.
[26]柯旺. 基于深度生成模型的老照片修复及其实现[D]. 成都:电子科技大学, 2021.
[27]路晓东,李海涛,牛奔. 格拉姆矩阵判据的推广及应用[J]. 山东师范大学学报(自然科学版), 2021,36(3):316-319.
[28]KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
|