[1] LIN J, KEOGH E, LONARDI S, et al. Finding motifs in time Series[C]// Proceedings of the 2nd Workshop on Temporal Data Mining. 2002:53-68.
[2] BUZA K, SCHMIDT-THIEME L. Motif-based classification of time series with Bayesian networks and SVMs[M]// FINK A, LAUSEN B, SEIDEL W, et al. Advances in Data Analysis, Data Handling and Business Intelligence. Springer Berlin Heidelberg, 2010:105-114.
[3] TRUONG C D, ANH D T. A novel clustering-based method for time series motif discovery under time warping measure[J]. International Journal of Data Science & Analytics, 2017. DOI:10.1007/S41060.017-0060-3.
[4] PHU L, ANH D T. Motif-based method for initialization the K-means clustering for time series data[J]. Journal of Computational & Applied Mathematics, 2011,236(7):1733-1742.
[5] TORKAMANI S, DICKS A, LOHWEG V. Anomaly detection on ATMs via time series motif discovery[C]// IEEE International Conference on Emerging Technologies and Factory Automation. 2016:1-8.
[6] LIN Y, MCCOOL M D, GHORBANI A A. Time series motif discovery and anomaly detection based on subseries join[J]. IAENG International Journal of Computer Science, 2010,37(3):8-20.
[7] MUEEN A, CHAVOSHI N. Enumeration of time series motifs of all lengths[J]. Knowledge and Information Systems, 2015,45(1):105-132.
[8] 〖KG-*3〗SHOKOOHI-YEKTA M, CHEN Y, CAMPANA B, et al. Discovery of meaningful rules in time series[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015:1085-1094.
[9] 周博,严洪森. 基于小波和多维泰勒网动力学模型的金融时间序列预测[J]. 系统工程理论与实践, 2013,33(10):2654-2662.
[10]张淑清,师荣艳,李盼,等. 基于混沌关联积分的暂态电能质量扰动分类[J]. 仪器仪表学报, 2015,36(1):160-166.
[11]CHIU B, KEOGH E, LONARDI S. Probabilistic discovery of time series motifs[C]// Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2003:493-498.
[12]MUEEN A, KEOGH E, ZHU Q, et al. Exact discovery of time series motif[C]// Proceedings of 2009 SIAM International Conference on Data Mining. 2009:473-484.
[13]YEH C C M, ZHU Y, ULANOVA L, et al. Matrix Profile I: All pairs similarity joins for time series: A unifying view that includes motifs, discords and shapelets[C]// 2016 IEEE 16th International Conference on Data Mining. 2016:1317-1322.
[14]MUEEN A, VISWANATHAN K, GUPTA C, et al. The Fastest Similarity Search Algorithm for Time Series Subsequences Under Euclidean Distance[EB/OL]. (2015-08-01)[2017-11-01]. http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html.
[15]ZHU Y, ZIMMERMAN Z, SENOBARI N S, et al. Matrix Profile II: Exploiting a novel algorithm and GPUs to break the one hundred million barrier for time series motifs and joins[C]// 2016 IEEE 16th International Conference on Data Mining. 2016:739-748.
[16]NUNTHANID P, NIENNATTRAKUL V, RATANAMAHATANA C A. Discovery of variable length time series motif[C]// IEEE International Conference on Electrical Engineering/Electronics. 2011:472-475.
[17]TANG H, LIAO S S. Discovering original motifs with different lengths from time series[J]. Knowledge Based Systems, 2008,21(7):666-671.
[18]HEGLAND M, CLARKE W, KAHN M. Mining the MACHO dataset[J]. Computer Physics Communications, 2002,142(1-3): 22-28.
[19]LAMPERT C H, BLASCHKO M B, HOFMANN T. Beyond sliding windows: Object localization by efficient subwindow search[C]// Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 2008. DOI:10.1109/CVPR.2008.4587586.
[20]MUEEN A. Time series motif discovery: Dimensions and applications[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2014,4(2):152-159.
[21]RAKTHANMANON T, CAMPANA B, MUEEN A, et al. Searching and mining trillions of time series subsequences under dynamic time warping[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012:262-270.
[22]DAU H A, KEOGH E. KAMGAR K, et al. The UCR Time Series Archive[J]. IEEE/CAA Journal of Automatica Sinica, 2019,6(6):6-18.
[23]MOHAMMAD Y, NISHIDA T. Exact Multi-length Scale and Mean Invariant Motif Discovery[M]. Kluwer Academic Publishers, 2016:322-339.
[24]NIENNATTRAKUL V, WANICHSAN D, RATANAMAHATANA C A. Accurate subsequence matching on data stream under time warping distance[C]// Proceedings of the 13th Pacific-Asia International Conference on Knowledge Discovery and Data Ming. 2010:156-167.
|