[1] 陈丹凤,陈伟昌,赖峥嵘,等. 中小河流洪水预报难点及对策[J]. 农业灾害研究, 2018,8(3):50-51.
[2] 刘志雨,李致家,杨大文,等. 中小河流洪水预警指标确定与预报技术研究[M]. 北京:科学出版社有限责任公司, 2016.
[3] 刘志雨. 山洪预警预报技术研究与应用[J]. 中国防汛抗旱, 2012,22(2):41-45.
[4] HAYKIN S. Neural Networks: A Comprehensive Foundation[M]. Prentice Hall PTR, 1994.
[5] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982,79(8):2554-2558.
[6] LORRAI M , SECHI G M. Neural nets for modelling rainfall-runoff transformations[J]. Water Resources Management, 1995,9(4):299-313.
[7] 侯翔,汤元斌. 基于BP神经网络的洪水预测研究[J]. 长江大学学报(自然科学版), 2013,10(25):88-90.
[8] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[9] DIETTERICH T G. Ensemble methods in machine learning[C]// Proceedings of the 1st International Workshop on Multiple Classifier Systems. 2000:1-15.
[10]KROGH B A, VEDELSBY J. Neural networks ensembles, cross validation and active learning[J]. Advances in Neural Information Processing Systems, 1995, 7(10):231-238.
[11]程子鹏. 基于集成学习的中长期水文预报研究[D]. 武汉:华中科技大学, 2017.
[12]冯钧,潘飞. 一种LSTM-BP多模型组合水文预报方法[J]. 计算机与现代化, 2018(7):82-85.
[13]CAI C, WANG J, LI Z. Improving TIGGE precipitation forecasts using an SVR ensemble approach in the Huaihe river basin[J]. Advances in Meteorology, 2018. DOI:10.1155/2018/7809302.
[14]许国艳,朱进,司存友,等. 基于CNN和MC的水文时间序列预测组合模型[J]. 计算机与现代化, 2019(11):23-28.
[15]王欢. 浅谈中小河流洪水预报的难点与对策[J]. 水资源开发与管理, 2015(1):82-84.
[16]SHI Z, ZHANG L, LIU Y, et al. Crowd counting with deep negative correlation learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern recognition. 2018:5382-5390.
[17]盛伟国, 单鹏霄. 一种基于小生境的负相关神经网络集成算法[J]. 浙江工业大学学报, 2016,44(5):482-486.
[18]CHEN H, YAO X. Regularized negative correlation learning for neural network ensembles[J]. IEEE Transactions on Neural Networks, 2009,20(12):1962-1979.
[19]LIU Y, YAO X. Ensemble learning via negative correlation[J]. Neural Networks, 1999,12(10):1399-1404.
[20]洪铭,汪鸿翔,刘晓芳,等. 采用负相关学习的SVM集成算法[J]. 华侨大学学报(自然科学版), 2018,39(6):162-166.
[21]YI J H, XU W H, CHEN Y T. Novel back propagation optimization by cuckoo search algorithm[J]. The Scientific World Journal, 2014, Article ID:878262.
[22]CYBENKO G. Continuous Valued Neural Networks with Two Hidden Layers Are Sufficient[M]. Center for Supercomputing Research and Development, University of Illinois at Urbana-Champaign, 1988.
[23]张海涛,李美霖,董帅含. 两层级联卷积神经网络的人脸检测[J]. 中国图象图形学报, 2019,24(2):203-214.
[24]BROWNLEE J. Long Short-term Memory Networks with Python: Develop Sequence Prediction Models with Deep Learning[M]. Machine Learning Mastery, 2017.
[25]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
[26]UEDA N, NAKANO R. Generalization error of ensemble estimators[C]// Proceedings of IEEE International Conference on Neural Networks. 1996,1:90-95.
[27]马涛. 组合预测方法及其应用研究[D]. 兰州:兰州大学, 2017.
[28]LIU Y, YAO X. Simultaneous training of negatively correlated neural networks in an ensemble[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999,29(6):716-725.
[29]CHEN H, YAO X. Multiobjective neural network ensembles based on regularized negative correlation learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010,22(12):1738-1751.
[30]GUPTA H V, KLING H, YILMAZ K K, et al. Decomposition of the mean squared error and NSE performance criteria: Implications for improving Hydrological modelling[J]. Journal of Hydrology, 2009,377(1-2):80-91.
[31]KNOBEN W J M, FREER J E, WOODS R A. Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores[J]. Hydrology and Earth System Sciences, 2019,23(10):4323-4331.
[32]张荣,庞博,徐宗学,等. 基于多准则的城市雨洪模型不确定性分析方法[J]. 水力发电学报, 2018,37(6):62-73.
|