[1] 中华人民共和国国家卫生健康办公厅. 关于印发电子病历系统应用水平分级评价管理办法(试行)及评价标准(试行)的通知[EB/OL]. (2018-12-09)[2020-01-01]. 〖JP4〗http:// www.gov.cn/xinwen/2018-12/09/content5347261.html.
[2] 中华人民共和国卫生部. 电子病历基本规范(试行) [EB/OL]. (2017-02-22)[2020-01-01]. http://www.gov.cn/zwgk/2017-02/22/content_1547432.html.
[3] IDRI A, BENHAR H, FERNNDEZ-ALEMN J L, et al. A systematic map of medical data preprocessing in knowledge discovery[J]. Computer Methods and Programs in Biomedicine, 2018,162:69-85.
[4] STRZELECKI A. Google medical update: Why is the search engine decreasing visibility of health and medical information websites?[J]. International Journal of Environmental Research and Public Health, 2020,17(4):1160.
[5] 侯梦薇,卫荣,陆亮,等. 知识图谱研究综述及其在医疗领域的应用[J]. 计算机研究与发展, 2018,55(12):2587-2599.
[6] Ren Qing-Dao-Er-Ji, Yila Su, Nier Wu. Research on Mongolian-Chinese machine translation based on the end-to-end neural network[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2020,18(1):1-16.
[7] 杨锦锋,于秋滨,关摇毅,等. 电子病历命名实体识别和实体关系抽取研究综述[J]. 自动化学报, 2014,40(8):1537-1562.
[8] 杨飞洪,张宇,覃露,等. 中文电子病历的命名实体识别研究进展[J]. 中国数字医学, 2020,15(2):9-12.
[9] CODEN A, SAVOVA G, SOMINSKY I, et al. Automatically extracting cancer disease characteristics from pathology reports into a disease knowledge representation model[J]. Journal of Biomedical Informatics, 2009,42(5): 937-949.
[10]SAVOVA G K, MASANZ J, OGREN P V, et al. Mayo clinical text analysis and knowledge extraction system(cTAKES): Architecture, component evaluation and applications[J]. Journal of the American Medical Information Association, 2010,17(5):507-513.
[11]陈昌浩,范太华. 改进的HMM模型在特征抽取上的应用[J]. 计算机测量与控制, 2018,26(4):217-220.
[12]张琴,郭红梅,张智雄. 融合词嵌入表示特征的实体关系抽取方法研究[J]. 数据分析与知识发现, 2017,1(9):8-15.
[13]殷章志,李欣子,黄德根,等. 融合字词模型的中文命名实体识别研究[J]. 中文信息学报, 2019,33(11):95-100.
[14]DUAN H, ZHENG Y. A study on features of the CRFs-based Chinese named entity recognition[J]. International Journal of Advanced Intelligence Paradigms, 2011,3(2):287-294.
[15]BHARADWAJ A, MORTENSEN D, DYER C, et al. Phonologically aware neural model for named entity recognition in low resource transfer settings[C]// Conference on Empirical Methods in Natural Language Processing. 2016:1462-1472.
[16]ZHANG X H, ZHANG Y Y, ZHANG Q, et al. Extracting comprehensive clinical information for breast cancer using deep learning methods[J]. International Journal of Medical Informatics, 2019,132:103985.
[17]曹宇,李天瑞,贾真,等. BGRU:中文文本情感分析的新方法[J]. 计算机科学与探索, 2019,13(6):973-981.
[18]翟社平,杨媛媛,邱程,等. 基于注意力机制Bi-LSTM算法的双语文本情感分析[J]. 计算机应用与软件, 2019,36(12):251-255.
[19]杨文明,褚伟杰. 在线医疗问答文本的命名实体识别[J]. 计算机系统应用, 2019,28(2):8-14.
[20]陈志豪,余翔,刘子辰,等. 基于注意力和字嵌入的中文医疗问答匹配方法[J]. 计算机应用, 2019,39(6):1639-1645.
[21]曹依依,周应华,申发海,等. 基于CNN-CRF的中文电子病历命名实体识别研究[J]. 重庆邮电大学学报(自然科学版), 2019,31(6):869-875.
[22]万里,罗曜儒,李智,等. 基于字词联合训练的Bi-LSTM中文电子病历命名实体识别[J]. 中国数字医学, 2019,14(2):54-56.
[23]石春丹,秦岭. 基于BGRU-CRF的中文命名实体识别方法[J]. 计算机科学, 2019,46(9):237-242.
|