[1] Herbrich R, Graepel T, Obermayer K. Support vector learning for ordinal regression[C]// The 9th International Conference on Artificial Neural Networks. 1999:97-102.
[2] Wu Hong, Lu Hanqing, Ma Songde. A practical SVM-based algorithm for ordinal regression in image retrieval[C]// Proceedings of the 11th ACM International
Conference on Multimedia. 2003:612-621.
[3] Zhang Daoqiang, Wang Yaping, Zhou Luping, et al. Multimodal classification of Alzheimer’s disease and mild cognitive impairment[J]. Neuroimage, 2011,55(3):856-867.
[4] Chang K Y, Chen C S, Hung Y P. A ranking approach for human ages estimation based on face images[C]// 2010 20th International Conference on Pattern Recognition (ICPR).
2010:3396-3399.
[5] Chang K Y, Chen C S, Hung Y P. Ordinal hyperplanes ranker with cost sensitivities for age estimation[C]// 2011 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2011:585-592.
[6] Kramer S, Widmer G, Pfahringer B, et al. Prediction of ordinal classes using regression trees[C]// Proceedings of the 12th International Symposium on Foundations of
Intelligent Systems. 2000:426-434.
[7] Frank E, Hall M. A simple approach to ordinal classification[C]// Proceedings of the 12th European Conference on Machine Learning. 2001:145-156.
[8] Cardoso J S, Da Costa J F P. Learning to classify ordinal data: The data replication method[J]. Journal of Machine Learning Research, 2007, 8(8): 1393-1429.
[9] Shashua A, Levin A. Ranking with large margin principle: Two approaches[C]// Advances in Neural Information Processing Systems. 2002:937-944.
[10]Sun Bingyu, Li Jiuyong, Wu D D, et al. Kernel discriminant learning for ordinal regression[J]. IEEE Transactions on Knowledge and Data Engineering, 2010,22(6):906-910.
[11]Liu Yang, Liu Yan, Chan K C C. Ordinal regression via manifold learning[C]// The 25th AAAI Conference on Artificial Intelligence. 2011.
[12]Sun Bingyu, Wang Hailei, Li Wenbo, et al. Constructing and combining orthogonal projection vectors for ordinal regression[J]. Neural Processing Letters, 2015,41
(1):139-155.
[13]Liu Yang, Liu Yan, Chan K C C, et al. Neighborhood preserving ordinal regression[C]// Proceedings of the 4th International Conference on Internet Multimedia Computing
and Service. 2012:119-122.
[14]余海犇,陈松灿. 采用双重特征扰动的最小平方有序回归[J]. 计算机科学与探索, 2014,8(9):1085-1091.
[15]Maaten L, Chen M, Tyree S, et al. Learning with marginalized corrupted features[C]// Proceedings of the 30th International Conference on Machine Learning (ICML-13).
2013:410-418.
[16]Tian Qing, Chen Songcan. A novel ordinal learning strategy: Ordinal nearest-centroid projection[J]. Knowledge-Based Systems, 2015,88:144-153.
[17]Hinton G E. Connectionist learning procedures[J]. Artificial Intelligence, 1989,40(1):185-234.
[18]Fldiák P. Learning invariance from transformation sequences[J]. Neural Computation, 1991,3(2):194-200.
[19]Mitchison G. Removing time variation with the anti-Hebbian differential synapse[J]. Neural Computation, 1991,3(3):312-320.
[20]Wiskott L, Sejnowski T J. Slow feature analysis: Unsupervised learning of invariances[J]. Neural Computation, 2002,14(4):715-770.
[21]Franzius M, Wilbert N, Wiskott L. Invariant object recognition and pose estimation with slow feature analysis[J]. Neural Computation, 2011,23(9):2289-2323.
[22]Peterson L E. K-nearest neighbor[J]. Scholarpedia, 2009, 4(2):1883. |