计算机与现代化 ›› 2016, Vol. 251 ›› Issue (07): 28-32.doi: 10.3969/j.issn.1006-2475.2016.07.006
摘要: 协同过滤算法利用大量数据,通过研究用户的喜好可以为用户推荐其感兴趣的项目,在电子商务得到了广泛应用。然而,此类算法在面临扩展性、数据稀疏性和冷启动等问题时,出现推荐准确度下降和推荐效率偏低的问题。针对这些问题,本文引入用户属性相似度的概念,使用K-means聚类算法将用户划分到恰当用户簇,预测用户对项目的评分。然后,通过混合加权的方法,将基于用户属性的K均值聚类的推荐算法与基于项目的协同过滤算法相融合,提出综合用户属性的协同过滤算法。通过在MovieLens数据集上进行实验,结果表明本文所提出的算法具有可扩展性,同时在一定程度上缓解了冷启动问题,提高了推荐算法的预测准确度。