计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 26-31.doi: 10.3969/j.issn.1006-2475.2025.12.004

• 人工智能 • 上一篇    下一篇

基于边缘计算的智能监考系统

  


  1. (1.新疆师范大学计算机科学技术学院,新疆 乌鲁木齐 830054; 2.铜陵学院数学与计算机学院,安徽 铜陵 244061; 
    3.中国科学院新疆理化技术研究所,新疆 乌鲁木齐 830011)
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介: 作者简介:李京阳(1997—),男,吉林公主岭人,硕士研究生,研究方向:计算机视觉,边缘计算,E-mail: 845134358@qq.com; 通信作者:薛化建(1978—),男,河南孟州人,教授级高级工程师,博士,研究方向:边缘计算,自然语言处理,E-mail: xuehj@tlu.edu.cn; 杨勇(1978—),男,陕西汉中人,教授,博士,研究方向:自然语言处理,智慧教育; 任鸽(1986—),女,河南兰考人,副教授,硕士,研究方向:自然语言处理,数据挖掘。
  • 基金资助:
    基金项目:新疆维吾尔自治区重点研发专项(2020B02018-2); 铜陵学院校级教学研究项目(2023xj022)
      

Intelligent Proctoring System Based on Edge Computing


  1. (1. College of Computer Science and Technology, Xinjiang Normal University, Urumqi 830054, China; 
    2. College of Mathematics and Computer Science, Tongling University, Tongling 244061, China;
    3. Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China) 

  • Online:2025-12-18 Published:2025-12-18

摘要:
摘要:针对远程网络考试中缺乏远程监管技术手段、考场行为不可追溯和考生身份难以实时验证等问题,提出一种基于边缘计算的智能监考系统。该系统由考试机、教师机、考点服务器和省服务集群组成。在考试机上利用CLAHE方法对图像进行光照的均匀化,然后将图像传送到模型中,并借助OpenVINO来加速检测过程;考试过程中,摄像头随机捕捉带有考生图像的桌面信息,图像经过考试终端上的模型进行检测,这些考生桌面图像临时存储在考点服务器;考试结束后,统一将本次考试的记录发送到省集群服务器上,作为后续查验的证明。实验结果表明,系统对硬件性能要求低,提高了对光照的鲁棒性,模型准确率达到95%左右,网络方面表现出更好的容错性。目前,该系统已在某边疆地区得到了推广应用。


关键词: 关键词:边缘计算, 人脸识别, 行为检测, 实时监考, 深度学习

Abstract: Abstract: To address the lack of remote supervision technologies, non-traceability of exam behavior, and difficulty in real-time verification of examinee identities in online remote examinations, this paper proposes an intelligent proctoring system based on edge computing. The system consists of exam terminals, teacher terminals, exam site servers, and a provincial service cluster. On the exam terminals, the CLAHE method is used to equalize image illumination before the images are transmitted to the model, with OpenVINO employed to accelerate the detection process. During the examination, the camera randomly captures desktop images containing the examinee’s face, and these images are processed by the model on the exam terminal. These images are temporarily stored on the exam site server, and after the exam, the records are sent to the provincial cluster server for post-exam verification. Experimental results demonstrate that the system has low hardware performance requirements, improves robustness to lighting variations, achieves a model accuracy of approximately 95%, and shows better fault tolerance in network performance. The system has already been deployed and applied in a remote border region.


Key words: Key words: edge computing, face recognition, behavior detection, real time invigilation, deep learning 

中图分类号: