[1] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C] // Proceedings of the 10th International Conference on World Wide Web. ACM, 2001:285-295
[2] 张宇,吴静. 基于LDA主题模型的协同过滤推荐算法[J]. 智能计算机与应用, 2024,14(2):190-194.
[3] AHMADIAN S,AFSHARCHI M,MEGHDADI M. A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems[J]. Multimedia Tools and Applications, 2019,78(13):17763-17798.
[4] 李灵慧,王逊,王云沼,等. 融合动态K近邻Slope_One的协同过滤推荐算法[J]. 计算机与数字工程, 2024,52(1):156-161.
[5] 欧朝荣,胡军. 融合显隐式反馈的协同过滤推荐模型[J]. 控制与决策, 2024,39(3):1048-1056.
[6] LIN Z H, TIAN C X, HOU Y P, et a1.Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the ACM Web Conference 2022. ACM, 2022:2320-2329.
[7] TORRES N, MENDOZA M. Clustering approaches for top-k recommender systems[J]. International Journal on Artificial Intelligence Tools, 2019,28(5). DOI: 10.1142/S0218
21301950019.
[8] 史加荣,何攀. 结合矩阵补全的宽度协同过滤推荐算法[J]. 智能系统学报, 2024,19(2):299-306.
[9] HONG Y. A framework of three-way cluster analysis[C]// Proceedings of the International Joint Conference on Rough Sets. Springer, 2017:300-312.
[10] KOOHI H, KIANI K. User based collaborative filtering using fuzzy C-means[J]. Measurement, 2016,91:134-139.
[11] 赵宇,刘凤,舒巧媛,等. 基于马尔可夫聚类和混合协同过滤的电视节目推荐[J]. 计算机应用与软件, 2020,37(2):218-225.
[12] LIU Y, CHEN L, HE X N, et a1.Modelling high-order social relations for item recommendation[J].IEEE Transactions on Knowledge and Data Engineering, 2022,34(9):4385-4397.
[13] RITA R, NUR U M, KRIDANTO S. Personalized neural network-based aggregation function in multi-criteria collaborative filtering[J]. Journal of King Saud University- Computer and Information Sciences, 2024,36(1). DOI: 10.1016/j.jksuci.2024.101922.
[14] GOEL C, SINHA B B. Cross-domain collaborative filtering: A deep neural network approach for accurate and diverse recommendations[J]. Procedia Computer Science, 2024,235:3408-3417.
[15] 王井. 一种基于订阅记录的图书协同过滤推荐方法研究[J]. 情报科学, 2020,38(3):54-59.
[16] ZHU X, SUN Y Q. Differential privacy for collaborative filtering recommender algorithm[C]// Proceedings of the 2016 ACM on International Workshop on Security and Privacy Analytics. ACM, 2016:9-16.
[17] KUZELEWSKA U. Multi-clustering used as neighborhood identification strategy in recommender systems[C]// International Conference on Dependability and Complex Systems. Springer, 2019:293-302.
[18] 罗园,陈希,周荣. 基于用户兴趣变化和社会化标注信息的协伺过滤推荐方法[J]. 系统工程, 2020,38(4):151-158.
[19] 苏庆,章静芳,林正鑫,等. 改进模糊划分聚类的协同过滤推荐算法[J]. 计算机工程与应用, 2019,55(5):118-123.
[20] LIU Y R, HUANG F Y, XIE X L, et al. Research on singular value decomposition recommendation algorithm based on data filling[J]. International Journal of Information Technologies and Systems Approach, 2023,16(3):1-15.
[21] 王运,倪静,马刚. 基于FunkSVD矩阵分解和相似度矩阵的推荐算法[J]. 计算机应用与软件, 2019,36(12):245-250.
[22] 董云薪,林耿,张清伟,等. 基于Apriori算法填充数据及改进相似度的推荐算法[J]. 计算机科学, 2022,49(11A). DOI: 10.11896/jsjkx.211000005.
[23] 王留芳,刘镇镇,魏蓝,等. 基于双因子混合加权相似度的协同过滤推荐算法[J]. 河南理工大学学报(自然科学版), 2020,39(6):133-138.
[24] 李浩,梁京章,潘莹. 一种改进的兴趣相似度个性化推荐算法[J]. 计算机技术与发展, 2022,32(12):1-6.
[25] 邢长征,金媛. 填补法和改进相似度相结合的协同过滤算法[J]. 计算机应用研究, 2019,36(6):1643-1645.
[26] 吴锦昆,单剑锋. 基于改进型相似度的协同过滤算法的研究[J]. 计算机技术与发展, 2022,32(4):39-43.
[27] BOBADILLA J, SERRADILLA F, BERNAL J. A new collaborative filtering metric that improves the behavior of recommender systems[J]. Knowledge-Based Systems, 2010,23(6):520-528.
|