计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 19-25.doi: 10.3969/j.issn.1006-2475.2025.12.003

• 人工智能 • 上一篇    下一篇

基于卷积双通道多层感知机混合器和加权投票机制的风电机组齿轮箱故障诊断

  


  1. (1.国能锦界能源有限责任公司,陕西 榆林 719319; 2.中国电建集团华东勘测设计研究院有限公司,浙江 杭州 311122;
    3.三峡大学电气与新能源学院,湖北 宜昌 443002)
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介: 作者简介:王望龙(1981—),男,陕西澄城人,工程师,学士,研究方向:新能源发电系统运行维护与管理,E-mail: wwlong1981@126.com; 徐军杨(1986—),男,浙江丽水人,高级工程师,学士,研究方向:新能源发电系统运行维护与管理,E-mail: xu_jy3@hdec.com; 苏鹏(1983—),男,陕西神木人,工程师,学士,研究方向:新能源发电系统运行维护与管理,E-mail: 16149832@ceic.com; 通信作者:付文龙(1988—),男,湖北仙桃人,副教授,博士,研究方向:发电设备健康管理,人工智能应用,E-mail: ctgu_fuwenlong@126.com。
  • 基金资助:
    基金项目:国家自然科学基金资助项目(51741907)
       

Fault Diagnosis of Wind Turbine Gearbox Based on Convolutional Dual Channel Multilayer Perceptron Mixer and Weighted Voting Mechanism


  1. (1. Guoneng Jinjie Energy Co., Ltd., Yulin 719319, China; 2. Power China Huadong Engineering Co., Ltd., Hangzhou 311122, China; 3. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)
  • Online:2025-12-18 Published:2025-12-18

摘要:
摘要:齿轮箱是风电机组中关键且易损的部件之一,其健康状况的故障诊断对减少运营和维护成本以及提高成本效益具有重要意义。为此,本文提出一种基于卷积双通道多层感知机混合器和加权投票机制的风电机组齿轮箱故障诊断方法。首先,将原始振动信号通过连续小波变换转化为二维时频图像;然后,通过二维卷积网络提取二维时频图像的局部特征,同时将时频图像数据划分为不重叠的补丁,构建双通道多层感知机混合器网络以提取全局特征;最后,将提取到的2个全局特征向量加权,得到最终的特征表示,并通过全连接层分类得到最终的故障诊断结果。通过在康涅狄格大学齿轮箱数据集上进行实验,结果表明所提方法相较于其他传统方法具有更好的诊断性能,取得了最高诊断准确率100%。


关键词: 关键词:风电机组齿轮箱, 故障诊断, 卷积网络, 双通道多层感知机混合器, 加权投票机制

Abstract: Abstract: The gearbox is one of the key and vulnerable components in wind turbines, and the fault diagnosis of its health condition is of great significance to reduce operation and maintenance costs and improve cost efficiency. Therefore, a fault diagnosis method of wind turbine gearbox based on convolutional double-channel multi-layer perceptron mixer and weighted voting mechanism is proposed. Firstly, the original vibration signal is transformed into two-dimensional time-frequency image by continuous wavelet transform. Then, the local features of 2D time-frequency images are extracted by using a two-dimensional convolutional network, and the time-frequency image data is divided into non-overlapping patches. A two-channel multi-layer perceptron mixer network is constructed to extract the global features. Finally, the extracted two global feature vectors are weighted to get the final feature representation, and the final fault diagnosis result is obtained through the full connection layer classification. The test results of UConn gearbox dataset show that the proposed method has higher diagnostic performance than other traditional methods, and achieves the highest diagnostic accuracy of 100%.

Key words: Key words: wind turbine gearbox, fault diagnosis, convolutional network, dual channel multi-layer perceptron mixer, weighted voting mechanism

中图分类号: