计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 115-122.doi: 10.3969/j.issn.1006-2475.2025.12.016

• 图像识别 • 上一篇    

元学习优化的面部色诊分类方法

  


  1. (1.五邑大学电子与信息工程学院,广东 江门 529020; 2.维多利亚大学,墨尔本 澳大利亚 8001;
    3.上海中医药大学中医学院,上海 201203) 
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介: 作者简介:罗冠聪(1999—),男,广东清远人,硕士研究生,研究方向:医学图像处理,E-amil: 987115297@qq.com; 通信作者:冯跃(1959—),男,广东台山人,教授,博士,研究方向:医学图像处理,机器学习,生物特征识别,E-mail: j002443@wyu.edu.cn; 徐红(1967—),女,北京人,教授,博士,研究方向:智能医疗; 秦传波,男,安徽宿州人,副教授,博士,研究方向:医学图像处理; 李福凤(1972—),女,河南信阳人,教授,博士,研究方向:中医四诊规范化,信息化研究及临床应用;钱鹏(1980—),男,江苏扬州人,高级实验师,硕士,研究方向:中医图像处理研究; 刘慧琳(1997—),女,广东江门人,博士研究生,研究方向:中医四诊多模态融合。
  • 基金资助:
     基金项目:广东省普通高校重点领域专项项目(2021ZDZX1032, 2023ZDZX1030); 广东省国际及港澳台高端人才交流专项(2020A1313030021); 五邑大学科研项目(2018GR003)
      

Facial Color Diagnosis Classification Method Optimized by Meta-learning


  1. (1. School of Electronics and Information Engineering, Wuyi University, Jiangmen 529020, China;
    2. Victoria University, Melbourne 8001, Australia;
    3. School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China) 
  • Online:2025-12-18 Published:2025-12-18

摘要: 摘要:针对面诊数据集稀缺以及面部颜色特征难以学习的问题,提出一种基于元学习优化的面部色诊分类网络,旨在提升网络对小数据集的适应性,并减少对大量训练数据的依赖。面诊作为中医诊断中的重要环节,通过观察患者面部颜色变化,可以辅助判断健康状况。然而,现有面诊数据资源有限,且特征的稀疏性和多样性对模型提出了更高要求。为此,本文首先应用元学习算法对分类网络进行参数初始化,使得网络能够在初始阶段即具备较强的学习能力,从而更有效地捕捉到有限面诊数据中的关键特征。本文设计的分类网络结构采用残差卷积模块,这种模块可在推理阶段通过重参数化技术进行剪枝,减少网络的计算复杂度与参数量。为了验证本文方法的有效性,分别在Face3c和Face5c这2个临床的面诊面色分类数据集上进行实验,与当前主流的若干种分类方法进行对比分析,结果表明,在所有的评估指标上,本文提出的分类网络均表现出最优的性能,在准确率上分别达到93.67%以及81.13%。这一结果表明,本文方法能够有效应对面诊小数据集的分类挑战,为中医诊断的智能化提供新的可能性。

关键词: 关键词:元学习, 面色分类, 深度学习, 面诊

Abstract: Abstract: To address the challenges of the scarcity of facial diagnosis datasets and the difficulty in learning facial color features, this paper proposes a facial color diagnosis classification network optimized by meta-learning, aiming to enhance the network’s adaptability to small datasets and reduce its reliance on large amounts of training data. Facial diagnosis, as an essential component of Traditional Chinese Medicine (TCM), assists in assessing health conditions by observing changes in facial color. However, existing facial diagnosis data resources are limited, and the sparsity and diversity of features impose higher demands on the models. First, a meta-learning algorithm is applied to initialize the network’s parameters, enabling the network to have a strong learning capability from the outset, and thus more effectively capture key features in the limited facial diagnosis data. The proposed classification network structure incorporates a residual convolutional module, which is pruned during the inference stage using reparameterization techniques, reducing the computational complexity and the number of parameter count. To validate the effectiveness of the proposed method, experiments were conducted on two clinical facial color classification datasets, Face3c and Face5c. A comparative analysis was made with several current mainstream classification methods. The results show that the proposed classification network consistently outperforms other methods across all evaluation metrics, accuracy scores of 93.67% and 81.13%, respectively. This result indicates that the proposed method can effectively address the classification challenges of small facial diagnosis datasets, offering new possibilities for the intelligent development of traditional Chinese medicine diagnostics.

Key words: Key words: meta-learning, facial color classification, deep learning, facial diagnosis

中图分类号: