计算机与现代化 ›› 2025, Vol. 0 ›› Issue (08): 10-15.doi: 10.3969/j.issn.1006-2475.2025.08.002

• 人工智能 • 上一篇    下一篇

基于深度学习的中文实体关系联合抽取方法

  


  1. (1.长沙理工大学物理与电子科学学院,湖南 长沙 410114;
    2.长沙理工大学近地空间电磁环境监测与建模湖南省普通高校重点实验室,湖南 长沙 410114)
  • 出版日期:2025-08-27 发布日期:2025-08-27
  • 作者简介: 作者简介:韦慧敏(1998—),女,安徽合肥人,硕士研究生,研究方向:人工智能,E-mail: whm123www456@163.com; 周佳可(1999—),男,湖南衡阳人,硕士研究生,研究方向:人工智能,E-mail: zhoujiake@stu.csust.edu.cn; 通信作者1:文勇军(1975—),男,讲师,博士,研究方向:大数据挖掘与分析,E-mail: micowen@csust.edu.cn; 通信作者2:唐立军(1963—),男,湖南邵阳人,教授,博士生导师,研究方向:信号检测与处理,E-mail: tanglj2009@163.com。 基于深度学习的中文实体关系联合抽取方法

Chinese Entity Relation Joint Extraction Method Based on Deep Learning


  1. (1. School of Physical & Electric Science, Changsha University of Science & Technology, Changsha 410114, China; 2. Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha 410114, China)
  • Online:2025-08-27 Published:2025-08-27

摘要: 摘要:实体关系抽取是构建知识图谱、提升搜索引擎效率等人工智能技术的重要一环。由于中文文本构词的复杂性、歧义性、隐含性等特点,中文实体关系抽取过程容易出现实体重叠、实体嵌套和信息冗余等情况。本文提出一种基于深度学习的中文实体关系联合抽取模型SRGP。该模型先对输入文本进行编码,通过特定关系预测网络得到特定关系集合,将特定关系集合与输入文本通过注意力机制融合到实体识别模块,减少中文实体关系抽取中的冗余计算;针对重叠实体抽取不充分和嵌套实体识别不准确等问题,利用特定关系集合约束下的全局归一化思想,提出基于特定关系的全局指针标注策略。分别选取2个通用中文数据集DUIE1.0和CMeIE,将本文模型SRGP与CopyRE、PRGC和CasRel等实体关系联合抽取典型模型进行对比实验,实验结果表明,本文模型在2个数据集上的F1值分别达到了61.3%和80.1%,比最好的基线模型CasRel和PRGC分别高1.5百分点和2.2百分点。




关键词: 关键词:实体关系抽取, 深度学习, 特定关系预测, 冗余计算, 全局指针标注策略

Abstract: Abstract: Entity-relationship extraction is an important part of artificial intelligence technologies such as building knowledge graphs and improving search engine efficiency. Due to the complexity, ambiguity, and implicit nature of Chinese text composition, the process of Chinese entity relationship extraction is prone to entity overlapping, entity nesting, and information redundancy. Therefore, this paper proposes a deep learning-based joint extraction model of Chinese entity relations(SRGP). The model firstly encodes the input text, obtains the set of specific relations through the specific relation prediction network, fuses the set of specific relations with the input text into the entity recognition module through the attention mechanism, and reduces the redundant computation in the extraction of Chinese entity relations. For the problems of insufficient extraction of overlapping entities and inaccurate recognition of nested entities, the global pointer annotation strategy based on specific relations is proposed by utilizing the idea of global normalization under the constraints of a specific set of relations. Two general Chinese datasets, DUIE1.0 and CMeIE, are selected respectively, and this paper’s model, SRGP, is compared with the typical models of entity-relationship joint extraction, such as CopyRE, PRGC, and CasRel, for the comparison experiments, and the experimental results show that this paper’s model achieves F1 values of 61.3% and 80.1% on the two datasets, which are respectively 1.5 and 2.2 percentage points higher than those of the best-performing baseline models CasRel and PRGC.

Key words: Key words: entity relationship extraction, deep learning, relationship-specific forecasting, redundant computing, global pointer labeling policy

中图分类号: