计算机与现代化 ›› 2025, Vol. 0 ›› Issue (10): 51-56.doi: 10.3969/j.issn.1006-2475.2025.10.009

• 人工智能 • 上一篇    下一篇

InstantMesh:早期胃癌图像三维重建方法

  


  1. (1.中北大学软件学院,山西 太原 030051; 2.北京医院特需医疗部及全科医学科,北京 100730;
    3.北京市马家堡社区卫生服务中心消化内镜中心,北京 100068;
    4.清华海峡研究院(厦门)药物警戒信息技术与数据科学研究中心,福建 厦门 361000; 5.北京医院消化内科,北京 100730)
  • 出版日期:2025-10-27 发布日期:2025-10-27
  • 作者简介: 作者简介:姚敏佳(2000—),女,山西原平人,硕士研究生,研究方向:计算机视觉,E-mail: 204829201@qq.com; 通信作者:赵莉(1976—),女,山东淄博人,主任医师,博士,研究方向:消化道早期癌症的诊断与治疗,E-mail:zhaoli3098@bjhmoh.cn; 王青(1977—),男,北京人,研究员,博士,研究方向:人工智能辅助诊断技术,E-mail: 13641213301@139.com。
  • 基金资助:
      基金项目:国家自然科学基金面上项目(82373426)
      

InstantMesh: Three-Dimensional Reconstruction Method for Early Gastric#br# Cancer Images


  1. (1. School of Software, North Central University, Taiyuan 030051, China;
    2. Department of Specialty Medicine and Division of Family Medicine, Beijing Hospital, Beijing 100730, China;
    3. Gastrointestinal Endoscopy Center, Beijing Majiapu Community Health Center, Beijing 100068, China;
    4. Research Center for Pharmacovigilance Information Technology and Data Science, Tsinghua Straits Research Institute 
    (Xiamen), Xiamen 361000, China; 5. Department of Gastroenterology, Beijing Hospital, Beijing 100730, China)
  • Online:2025-10-27 Published:2025-10-27

摘要:
摘要:近年来,我国胃癌发病率持续上升,而早期胃癌的诊断率却相对较低,放大内镜作为诊断早期胃癌的重要手段,尽管能观察到微小病灶,但传统诊断方法难于量化分析,限制了其在临床实践中的应用,对患者的治疗和预后带来极大的挑战。为了辅助早期胃癌的诊断,提高患者的生存率和预后,基于深度学习的放大胃镜图像三维重建算法已成为研究热点。本文提出利用InstantMesh框架,结合多视图扩散模型和稀疏视图重建模型,并基于前期对单个放大胃镜图像病灶区分割的坐标信息进行裁剪,实现对单个病灶区图像的高质量三维网格模型构建。此方法不仅提升了重建精度,降低了噪声干扰,同时使病灶特征更加清晰。实验结果表明,该方法在医学图像三维重建的定性和定量评估中均显著优于Unique3D、TripoSR、Convolutional Reconstruction Model(CRM)以及One-2-3-45等现有最新的单视图三维重建算法。本文旨在为胃癌的早诊早治提供有力的技术支持,为提高我国胃癌防治水平做出实质性贡献。


关键词: 关键词:深度学习, 早期胃癌, 三维重建, InstantMesh, 多视图扩散模型, 稀疏视图重建模型

Abstract:
Abstract: In recent years, the incidence of gastric cancer in China has been continuously rising, while the diagnosis rate of early gastric cancer remains relatively low. As an important means for diagnosing early gastric cancer, magnifying endoscopy can observe micro lesions, but traditional diagnostic methods are difficult to quantitatively analyze, which limits its application in clinical practice and poses a great challenge to the treatment and prognosis of patients. In order to assist in the diagnosis of early gastric cancer, improve the survival rate and prognosis of patients, the 3D reconstruction algorithm of magnified gastroscopy images based on deep learning has become a research hotspot. This paper proposes to use the InstantMesh framework, combined with a multi-view diffusion model and a sparse view reconstruction model, and crops images based on the coordinate information of the lesion area segmented in the previous single magnified gastroscopy image, achieves the construction of a high-quality 3D mesh model for single lesion area images. This method not only improves the reconstruction accuracy, reduces noise interference, but also makes the lesion features clearer. Experimental results show that this method is significantly better than the existing state-of-the-art single-view 3D reconstruction algorithms such as Unique3D, TripoSR, Convolutional Reconstruction Model (CRM) and One-2-3-45 in both qualitative and quantitative evaluation of medical image 3D reconstruction. This study aims to provide strong technical support for early diagnosis and treatment of gastric cancer, makes substantial contributions to improve the prevention and treatment of gastric cancer in my country.

Key words: Key words: deep learning, early gastric cancer, 3D reconstruction, InstantMesh, multi-view diffusion model, sparse view reconstruction model

中图分类号: